Repository of University of Nova Gorica

Show document
A+ | A- | SLO | ENG

Title:SIGNALING STUDIES IN THE EMERGING KIWIFRUIT PATHOGEN Pseudomonas syringae pv. actinidiae
Authors:Javvadi, Sree Gowrinadh (Author)
Venturi, Vittorio (Mentor) More about this mentor... New window
Files:.pdf Sree_Gowrinadh_Javvadi.pdf (4,41 MB)
 
Language:English
Work type:Doctoral dissertation (mb31)
Tipology:2.08 - Doctoral Dissertation
Organization:FPŠ - Graduate School
Abstract:In the past two decades emerging and re-emerging plant pathogens have caused new threats to the production of several economically important crops, one among them is P. syringae pv. actinidiae (PSA) which causes canker or leaf spot on kiwifruit plants. PSA enters plant through wounds and remains dormant in cortex tissue of the branches, and spreads in the tissue to cause severe symptoms from winter to early spring. The disease can be visualized by brown discoloration of buds, dark brown angular spots surrounded by yellow haloes on leaves, cankers with white to reddish (oxydation) exudate on twigs and trunks, fruit collapse, wilting and eventually plant mortality. Current control methods have their own significance in disease control, however there is considerable lack of clear understanding of PSA pathogenicity. Virulence of plant pathogens often relies on the synchronized/coordinated expression of pathogenicity factors via quorum sensing (QS). Therefore, investigations on QS in PSA may lead to develop novel disease control strategies and reliable methods to curb the disease. It is currently unknown whether PSA produces a QS signal molecule thus the aim of this thesis is to investigate whether PSA possesses a QS system. As genome mining did not reveal the presence of any currently known QS system, this study initially by metabolomics was aimed at identifying potentially low molecular weight secondary metabolite QS molecules produced by PSA. Azelaic acid was discovered to be produced by PSA, this is the first report of azelaic acid production by bacteria. The characterization and possible role of azelaic acid in QS is presented. Since azelaic acid is ubiquitous in nature, in addition to determining its biological role, the catabolism of azelaic acid in bacteria using the efficient degrader Pseudomonas nitroreducens DSM 9128 was also studied.
Keywords:Quorum sensing, Azelaic acid, Metabolomics, Catabolism
Year of publishing:2017
Source:Nova Gorica
COBISS_ID:4974587 Link is opened in a new window
URN:URN:SI:UNG:REP:ZKM02EHD
Views:2116
Downloads:120
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Document is not linked to any category.
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Back