Repozitorij Univerze v Novi Gorici

# Izpis gradiva A+ | A- | SLO | ENG

Naslov: Modelling of Macrosegregation of a Low-Frequency Electromagnetic Direct Chill Casting by a Meshless Method Hatić, Vanja (Avtor)Šarler, Božidar (Mentor) Več o mentorju... Vanja_Hatic.pdf (28,80 MB) Angleški jezik Doktorsko delo/naloga (mb31) 2.08 - Doktorska disertacija FPŠ - Fakulteta za podiplomski študij The main aim of the dissertation is to develop a meshless model that describes the solidification and macrosegregation phenomena during the direct chill casting (DCC) of aluminium alloys under the influence of a low-frequency electromagnetic field. Macrosegregation is an undesired consequence of alloy solidification. It represents one of the major casting defects and substantially reduces the quality of the finished product. On the other hand, low-frequency electromagnetic casting (LFEC) is a process that promises to increase greatly the product quality, including the reduction of macrosegregation. The modelling of both processes is of tremendous importance to the metallurgical industry, due to the high costs of experiments during production. The volume-averaging formulation is used for the modelling of the solid-liquid interaction. The conservation equations for mass, energy, momentum, and species are used to model the solidification of aluminium-alloy billets in axysimmetry. The electromagnetic-induction equation is coupled with the melt flow. It is used to calculate the magnetic vector potential and the Lorentz force. The Lorentz force is time-averaged and included in the momentum-conservation equation, which intensifies the melt flow. The effect of Joule heating is neglected in the energy conservation due to its insignificant contribution. The semi-continuous casting process is modelled with the Eulerian approach. This implies that the global computational domain is fixed in space. The inflow of the liquid melt is assumed at the top boundary and the outflow of the solid metal is assumed at the bottom. It is assumed that the whole mushy area is a rigid porous media, which is modelled with the Darcy law. The Kozeny-Carman relation is used for the permeability definition. The incompressible mass conservation is ensured by the pressure correction, which is performed with the fractional step method. The conservation equations and the induction equation are posed in the cylindrical coordinate system. A linearised eutectic binary phase diagram is used to predict the solute redistribution in the solid and liquid phases. The micro model uses the lever rule to determine the temperature and the liquid fraction field from the transport equations. The partial differential equations are solved with the meshless-diffuse-approximate method (DAM). The DAM uses weighted least squares to determine a locally smooth approximation from a discrete set of data. The second-order polynomials are used as the trial functions, while the Gaussian function is used as the weight function. The method is localised by defining a smooth approximation for each computational node separately. This is performed by associating each node with a unique local neighbourhood, which is used for the minimisation. There are 14 nodes included in the local subdomains for the DCC and LFEC simulations. The stability of the advective term is achieved with a shift of the Gaussian weight in the upwind direction. This approach is called the adaptive upwind weight function and is used in the DAM for the first time. The Explicit-Euler scheme is used for temporal discretisation. The use of a meshless method and the automatic node-arrangement generation makes it possible to investigate the complicated flow structures, which are formed in geometrically complex inflow conditions in a straightforward way. A realistic inflow geometry and mould can therefore be included in the model. The number of computational nodes is increased in the mushy zone and decreased in the solid phase, due to the optimisation of the computational time and memory. The computational node arrangement is automatically adapted with time, as the position of the mushy zone is changed in shape and position. low-frequency electromagnetic casting, direct chill casting, macrosegregation, electromagnetic stirring, aluminium alloys, meshless methods, diffuse-approximate method, multiphysics model, solidification 2019 Nova Gorica 5376763 URN:SI:UNG:REP:MEX9R09N 2181 109 Gradivo ni uvrščeno v področja.

Skupna ocena: (0 glasov) Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

## Sekundarni jezik

Jezik: Slovenski jezik Modeliranje makroizcejanja pri nizkofrekvenčnem elektromagnetnem polkontinuirnem ulivanju z brezmrežno metodo Glavni namen doktorske disertacije je razviti brezmrežni model, ki opisuje pojav strjevanja in makroizcejanja pri polkontinuirnem ulivanju (PU) aluminijevih zlitin pod vplivom nizkofrekvenčnega elektromagnetnega polja. Makroizcejanje je nezaželena posledica strjevanja zlitin. Predstavlja eno izmed poglavitnih napak ulivanja in močno vpliva na znižanje kvalitete končnega izdelka. Po drugi strani je nizkofrekvenčno elektromagnetno ulivanje (NFEU) proces, ki obljublja veliko povečanje kvalitete izdelkov, vključno z zmanjšanjem makroizcejanja. Modeliranje obeh procesov je zelo pomembno za metalurško industrijo zaradi velikih stroškov eksperimentov med proizvodnjo. Formulacija volumskega povprečenja je uporabljena za modeliranje interakcije med trdno in kapljevito fazo. Enačbe za ohranitev mase, energije, gi\-balne količine in sestavin so uporabljene za simulacijo strjevanja drogov iz aluminijevih zlitin v osni simetriji. Indukcijska elektromagnetna enačba je sklopljena s tokom taline. Uporabi se za izračun vektorskega magnetnega potenciala in Lorentzove sile. Lorentzova sila je časovno povprečena in nato vključena v enačbo za ohranitve gibalne količine, kar poveča intenziteto toka taline. Vpliv Joulovega gretja v enačbi za ohranitev energije ni upoštevan zaradi zanemarljivega vpliva. Polkontinuirno ulivanje se modelira z Eulerjevim pristopom. To pomeni, da je globalna računska domena fiksna v prostoru. Na zgornjem robu se predpostavi dotok kapljevite faze, na spodnjem pa odtok trdne. Upošteva se, da je celotno kašasto območje tog porozen medij, ki se ga modelira z Darcyjevim zakonom. Za določitev permeabilnosti je uporabljen Kozeny-Carmanov izraz. Ohranitev nestisljive mase je zagotovljena z enačbo za tlačni popravek, ki se reši z metodo delnih korakov. Tako transportne enačbe kot tudi indukcijska enačba so postavljeni v cilindričnem koordinatnem sistemu. Prerazporeditev snovi v trdni in kapljeviti fazi je določena z uporabo lineariziranega evtektičnega faznega diagrama za dvokomponentne zlitine. V mikromodelu se uporabi princip ročice za določitev temperature in količine kapljevite faze iz transportnih enačb. Parcialne diferencialne enačbe so rešene z brezmrežno metodo difuzijskih približkov (MDP). MDP uporablja metodo uteženih najmanjših kvadratov za določitev lokalno gladke aproksimacije iz diskretnega nabora podatkov. Polinomi drugega reda so uporabljeni za testno funkcijo, medtem ko je Gaussova funkcija uporabljena za utež. Metoda je lokalizirana z določitvijo gladke funkcije za vsako računsko točko posebej. To je storjeno tako, da se vsaki točki določi unikatno lokalno okolico, ki se uporabi za minimizacijo. Za simulacijo PU in NFEU je v lokalne okolice vključenih 14 točk. Stabilnost advekcijskega člena je zagotovljena s premikom Gaussove uteži v privetrni smeri. Ta pristop se imenuje prilagodljiva privetrna utežna funkcija in je prvič uporabljena v MDP. Za časovno diskretizacijo je uporabljena eksplicitna Eulerjeva shema. Zaradi uporabe brezmrežne metode in samodejne razporeditve računskih točk je možno na enostaven način preučevati zahtevne tokovne strukture, ki se pojavijo pri geometrijsko kompleksnih dotočnih geometrijah. Zato se v simulacijo PU lahko vključi realna dotočna geometrija in kokila. Število računskih točk je povečano v kašastem območju in zmanjšano v trdni fazi zaradi optimizacije računskega časa in spomina. S časom se samodejno spreminja razporeditev računskih točk, saj kašasto območje spreminja obliko in pozicijo. nizkofrekvenčno elektromagnetno ulivanje, polkontinuirno ulivanje aluminija, makroizcejanje, elektromagnetno mešanje, aluminijeve zlitine, brezmrežne metode, metoda difuzijskih približkov, večfizikalni model, strjevanje

Nazaj