Repository of University of Nova Gorica

Show document
A+ | A- | SLO | ENG

Title:Uranium isotope fractionation during adsorption, (co) precipitation, and biotic reduction
Authors:Dang, Duc Huy (Author)
Novotnik, Breda (Author)
Wang, Wei (Author)
Georg, Bastian R. (Author)
Evans, Douglas R. (Author)
Files:This document has no files. This document may have a phisical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Language:English
Work type:Not categorized (r6)
Tipology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:Uranium contamination of surface environments is a problem associated with both U-ore extraction/processing and situations in which groundwater comes into contact with geological formations high in uranium. Apart from the environmental concerns about U contamination, its accumulation and isotope composition have been used in marine sediments as a paleoproxy of the Earth’s oxygenation history. Understanding U isotope geochemistry is then essential either to develop sustainable remediation procedures as well as for use in paleotracer applications. We report on parameters controlling U immobilization and U isotope fractionation by adsorption onto Mn/Fe oxides, precipitation with phosphate, and biotic reduction. The light U isotope (235U) is preferentially adsorbed on Mn/Fe oxides in an oxic system. When adsorbed onto Mn/Fe oxides, dissolved organic carbon and carbonate are the most efficient ligands limiting U binding resulting in slight differences in U isotope composition (δ238U = 0.22 ± 0.06‰) compared to the DOC/DIC-free configuration (δ238U = 0.39 ± 0.04‰). Uranium precipitation with phosphate does not induce isotope fractionation. In contrast, during U biotic reduction, the heavy U isotope (238U) is accumulated in reduced species (δ238U up to −1‰). The different trends of U isotope fractionation in oxic and anoxic environments makes its isotope composition a useful tracer for both environmental and paleogeochemical applications.
Keywords:Uranium, fractionation, biotic, abiotic, oxides
Year of publishing:2016
Number of pages:12695-12704
Numbering:23, 2016
COBISS_ID:5458427 Link is opened in a new window
URN:URN:SI:UNG:REP:RFKQHTTM
DOI:10.1021/acs.est.6b01459 Link is opened in a new window
Views:489
Downloads:0
Metadata:XML RDF-CHPDL DC-XML DC-RDF
Categories:Document is not linked to any category.
:
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Environmental Science and Technology
Year of publishing:2016

Back