Repository of University of Nova Gorica

Show document
A+ | A- | SLO | ENG

Title:Interplay among Work Function, electronic structure and stoichiometry in nanostructured VOx films
Authors:Authors are not mentioned.
Files:This document has no files. This document may have a phisical copy in the library of the organization, check the status via COBISS. Link is opened in a new window
Work type:Not categorized (r6)
Tipology:1.01 - Original Scientific Article
Organization:UNG - University of Nova Gorica
Abstract:The work function is the parameter of greatest interest in many technological applications involving charge exchange mechanisms at the interface. The possibility to produce samples with a controlled work function is then particularly interesting, albeit challenging. We synthetized nanostructured vanadium oxide films by a room temperature Supersonic Cluster Beam Deposition method, obtaining samples with tunable stoichiometry and work function (3.7-7 eV). We present an investigation of the electronic structure of several vanadium oxide films as a function of the oxygen content via in-situ Auger, valence-band photoemission spectroscopy and work function measurements. The experiments probed the partial 3d density of states, highlighting the presence of strong V3d-O2p and V3d-V4s hybridization which influence 3d occupation. We show how controlling the stoichiometry of the sample implies control over work function, and that the access to nanoscale quantum confinement can be exploited to increase the work function of the sample relative to the bulk analogue. In general, the knowledge of the interplay among work function, electronic structure, and stoichiometry is strategic to match nanostructured oxides to their target applications
Keywords:work function, VOx, Electronic structure, nanostructured films
Year of publishing:2020
Number of pages:9
COBISS_ID:5574139 Link is opened in a new window
DOI: Link is opened in a new window
Categories:Document is not linked to any category.
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Physical Chemistry Chemical Physics
Year of publishing:2020