Repozitorij Univerze v Novi Gorici

Izpis gradiva
A+ | A- | SLO | ENG

Naslov:Comparative analysis of epidemiological models for COVID-19 pandemic predictions
Avtorji:Gupta, Rajan (Avtor)
Pandey, Gaurav (Avtor)
Pal, Saibal K. (Avtor)
Datoteke:URL https://doi.org/10.1080/24709360.2021.1913709
 
Jezik:Angleški jezik
Vrsta gradiva:Neznano ()
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:UNG - Univerza v Novi Gorici
Opis:Epidemiological modeling is an important problem around the world. This research presents COVID-19 analysis to understand which model works better for different regions. A comparative analysis of three growth curve fitting models (Gompertz, Logistic, and Exponential), two mathematical models (SEIR and IDEA), two forecasting models (Holt’s exponential and ARIMA), and four machine/deep learning models (Neural Network, LSTM Networks, GANs, and Random Forest) using three evaluation criteria on ten prominent regions around the world from North America, South America, Europe, and Asia has been presented. The minimum and median values for RMSE were 1.8 and 5372.9; the values for the mean absolute percentage error were 0.005 and 6.63; and the values for AIC were 87.07 and 613.3, respectively, from a total of 125 experiments across 10 regions. The growth curve fitting models worked well where flattening of the cases has started. Based on region’s growth curve, a relevant model from the list can be used for predicting the number of infected cases for COVID-19. Some other models used in forecasting the number of cases have been added in the future work section, which can help researchers to forecast the number of cases in different regions of the world.
Ključne besede:epidemic modeling, machine learning, neural networks, pandemic forecasting, time-series forecasting
Leto izida:2021
Št. strani:str. 69-91
Številčenje:no. 1, Vol. 15
COBISS_ID:70396931 Povezava se odpre v novem oknu
UDK:616
ISSN pri članku:2470-9379
URN:URN:SI:UNG:REP:N0TWWPDI
DOI:10.1080/24709360.2021.1913709 Povezava se odpre v novem oknu
Število ogledov:519
Število prenosov:7
Metapodatki:XML RDF-CHPDL DC-XML DC-RDF
Področja:Gradivo ni uvrščeno v področja.
:
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Biostatistics & epidemiology
Skrajšan naslov:Biostatist. epidemiol.
Založnik:Taylor & Francis Group
ISSN:2470-9379
COBISS.SI-ID:70394883 Novo okno

Nazaj