Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


21 - 30 / 39
Na začetekNa prejšnjo stran1234Na naslednjo stranNa konec
21.
UV-protecting films based on bacterial cellulose, glycerol and polyvinyl alcohol: effect of water activity on barrier, mechanical and optical properties
Patricia Cazón, Gonzalo Velazquez, Manuel Vazquez, 2020, izvirni znanstveni članek

Opis: Biodegradable films based on bacterial cellulose, glycerol and polyvinyl alcohol are a new alternative to develop food packaging with the capac- ity to retard or inhibit the effect of UV radiation. However, these compounds are sensitive to moisture. Therefore, the purpose of this study was to evaluate the modifications of the mechanical, water vapor permeability and optical properties of these composite films depending on their water activity. Results showed that water molecules acted as a plasticizer agent, modifying the mechanical, water vapor perme- ability and optical properties of the developed films. However, an overplastification process took place at higher activity water, resulting in a weakness of film structure and decreasing drastically the elongation. The transmittance in the UV–VIS light region decreased when the activity water increased. No significant variations were observed in color, trans- parency or opacity properties.
Ključne besede: GAB model, Moisture adsorption isotherms, Plasticization, Bacterial cellulose, Mechanical properties, UV-barrier properties
Objavljeno v RUNG: 09.12.2020; Ogledov: 2610; Prenosov: 94
.pdf Celotno besedilo (552,03 KB)

22.
Effects of a Mixed O/F Ligand in the Tavorite-Type LiVPO4O Structure
Sorour Semsari Parapari, Jean-Marcel Ateba Mba, Elena Tchernychova, Gregor Mali, Iztok Arčon, Gregor Kapun, Mehmet Ali Gülgün, Robert Dominko, 2020, izvirni znanstveni članek

Opis: We report the synthesis and detailed structural and chemical characterization including electrochemical properties of a lithium vanadium oxy/fluoro-phosphate material. To the best of our knowledge, we have for the first time synthesized a LiVPO4O-type phase with a mixed O/F ligand. In the synthesis procedure, the LiVPO4O precursor compound was fluorinated via LiF incorporation, with preservation of the LiVPO4O framework structure. The operating potential of the synthesized material is increased compared to that of the LiVPO4O precursor (4.12 V vs 3.95 V versus metallic lithium, respectively). The related increase in operating potential was assigned to the effect of the intermixing O/F ligand, which is attained via the successful fluorine incorporation into the LiVPO4O structure. A characterization of the investigated materials was performed using microscale-covering XRD, XANES, and NMR techniques as well as nanoscale spatially resolved imaging and analytical STEM techniques. The obtained oxy/fluoro-phosphate phase is isostructural to LiVPO4O; however, the presence of the mixed O/F ligand promoted a higher symmetry of vanadium octahedra. These variations of the vanadium local environment along with the observed inhomogeneous distribution of the incorporated fluorine gave rise to the minor local deviations in vanadium valence. Our results clearly emphasize the connection among the fluorine ligand incorporation, its local distribution, and the electrochemical properties of the material.
Ključne besede: LiVPO4O, XRD, SEM, V XANES, Tavorite-Type, electrochemical properties
Objavljeno v RUNG: 17.02.2020; Ogledov: 3070; Prenosov: 0
Gradivo ima več datotek! Več...

23.
Looking for a topological insulator in the tetradymite family
Zipporah Rini Benher, Sandra Gardonio, Mattia Fanetti, Polina M. Sheverdyaeva, Paolo Moras, Matjaž Valant, 2019, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Materials that are topological insulators (TI) manifest a novel state for their electrons. They possess topological surface states that are not destroyed by the presence of non-magnetic impurities on their surfaces. This unique property lies in the bulk band structure and it is typically found in narrow gap semiconductor with strong spin-orbit coupling. Bi2Se3 and Bi2Te3 belong to the class of compounds called tetradymites and are considered as the 3D-prototypical TI materials. However, these compounds are not usually insulators but have metallic bulk conductivity as a consequence of intrinsic defect doping: vacancies and anti-site defects. For these reasons, it is difficult to electrically gate these materials for the manipulation and control of charge carriers for realizing devices. This led to the search for other topological materials, which might have better insulating behavior in their bulk. Theoretical studies have pointed out that ternary variants of the Bi2Se3 and Bi2Te3, such as Bi2Te2Se, Bi2Te2S, Bi2Se2S Sb2Te2Se and Sb2Te2S, should be stable TIs and potentially offer a chemical way to control TI behavior, in particular by lowering native doping. Among the cited ternary compounds, Bi2Se2S should manifest a genuine topological spin-transport regime hosting an isolated Dirac cone with the Dirac point in the gap as well. However, it has been poorly studied from the TI experimental perspective. Therefore, to uncover the full potential of the predicted topological electronic properties of the Bi-Se-S system, in this presentation we will revisit the crystallographic and electronic structure of Bi2Se3-Bi2S3 solid solutions. The combined use of bulk and surface sensitive techniques such as X-ray diffraction (XRD), low energy electron diffraction (LEED), scanning electron microscopy (SEM) with Energy Dispersive X-ray spectroscopy (EDX) and X-ray photoemission spectroscopy (XPS) was applied to analyze single crystal samples grown by us. The quality of the single crystals was suitable for rigorous measurement of the electronic properties by means of Angle Resolved Photoemission Spectroscopy. We unambiguously showed that within a certain solid solution range, the single crystals of Bi-Se-S have a rombohedral structure with the topological surface states as theoretically predicted.
Ključne besede: topological insulators, ternary tetradymite, electronic properties.
Objavljeno v RUNG: 19.12.2019; Ogledov: 4059; Prenosov: 0
Gradivo ima več datotek! Več...

24.
25.
26.
27.
Au and Ag on the Bi2Se3(0001) Surface: Experimental Electronic and Physical Properties
Sandra Gardonio, Mattia Fanetti, Katja Ferfolja, Matjaž Valant, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Binary bismuth chalcogenides, Bi2Se3 and Bi2Te3, have been extensively studied as reference topological insulators (TIs). These materials are bulk insulators with topological surface states (TSS) crossing the Fermi level. In contrast to conventional surface states of metals, the TSS are extremely robust against local modifications at the surface, such as adsorbed adatoms, localized defects or changes in the surface termination. This aspect makes the TIs attractive for applications in spintronics, plasmonics, quantum computing and catalysis. A theoretical model of charge transport by the TI surface states predicts that the TSS survive, provided that bonding at the metal/TI interface is weak. Ab-initio calculations have been done to understand the electronic properties of Au, Ni, Pt, Pd and graphene layers in a contact with Bi2Se3. These calculations showed that for Au and graphene the spin-momentum locking of TSS is maintained at the interface. In another theoretical study, Ag and Au thin layers on Bi2Se3 have been predicted to show a large Rashba splitting and a high spin polarization of the Ag quantum wells, providing a great potential for development of the spintronic devices. Finally, the calculations have foreseen that the presence of the robust TSS affects the adsorption properties of metals (Au bi-layer and clusters of Au, Ag, Cu, Pt, and Pd) supported on TI, in some cases resulting in the enhancement of the catalytic processes. Despite the fundamental importance of the metal/TI interfaces and a number of theoretical studies predicting exotic interfacial phenomena, the experimental knowledge about the metals on the TI surfaces is surprisingly limited, especially concerning combined study of morphology, growth mode, electronic and chemical properties. In order to exploit the predicted physical properties of such systems, it is especially important to extend the study above the diluted coverage regime and to understand what is the growth morphology of the metal on the TI surface, to what extent the metal overlayer interacts with the TI substrate, how the TSS change with the presence of the metal overlayer and what is the reactivity of the system at the different stages of the overlayer growth. Within this frame, we present a comprehensive surface sensitive study, of Au and Ag on Bi2Se3 by means of ARPES, XPS, SEM, LEED and XRD. The obtained results allow us to discuss the relation between electronic and physical properties at two of the most important model metal/TI interfaces
Ključne besede: topological insulator, electronic properties, synchrotron radiation
Objavljeno v RUNG: 27.06.2019; Ogledov: 3493; Prenosov: 0
Gradivo ima več datotek! Več...

28.
29.
30.
Iskanje izvedeno v 0.06 sek.
Na vrh