1. |
2. New achievements in orbital angular momentum beam characterization using a Hartmann wavefront sensor and the Kirkpatrick-Baez active optical system KAOSLuka Novinec, Matteo Pancaldi, Flavio Capotondi, Giovanni De Ninno, Francesco Guzzi, George Kourousias, Emanuele Pedersoli, Barbara Ressel, Benedikt Rösner, Alberto Simoncig, 2024, original scientific article Abstract: Advances in physics have been significantly driven by state-of-the-art technology, and in photonics and X-ray science this calls for the ability to manipulate the characteristics of optical beams. Orbital angular momentum (OAM) beams hold substantial promise in various domains such as ultra-high-capacity optical communication, rotating body detection, optical tweezers, laser processing, super-resolution imaging etc. Hence, the advancement of OAM beam-generation technology and the enhancement of its technical proficiency and characterization capabilities are of paramount importance. These endeavours will not only facilitate the use of OAM beams in the aforementioned sectors but also extend the scope of applications in diverse fields related to OAM beams. At the FERMI Free-Electron Laser (Trieste, Italy), OAM beams are generated either by tailoring the emission process on the undulator side or, in most cases, by coupling a spiral zone plate (SZP) in tandem with the refocusing Kirkpatrick–Baez active optic system (KAOS). To provide a robust and reproducible workflow to users, a Hartmann wavefront sensor (WFS) is used for both optics tuning and beam characterization. KAOS is capable of delivering both tightly focused and broad spots, with independent control over vertical and horizontal magnification. This study explores a novel non-conventional `near collimation' operational mode aimed at generating beams with OAM that employs the use of a lithographically manufactured SZP to achieve this goal. The article evaluates the mirror's performance through Hartmann wavefront sensing, offers a discussion of data analysis methodologies, and provides a quantitative analysis of these results with ptychographic reconstructions. Keywords: tailored photonics beams, orbital angular momentum of light, wavefront sensing, ptychography Published in RUNG: 19.08.2024; Views: 892; Downloads: 4 Full text (10,31 MB) This document has many files! More... |
3. |
4. Enhancing optical biosensing : comparing two physical treatments for GPTES chemical functionalization of cyclo-olefin copolymer foilBarbara Ressel, Jurij Urbančič, Marco Beltrami, Erik Betz-Güttner, Cinzia Cepek, Martina Conti, Ayesha Farooq, Patrizia Melpignano, 2024, original scientific article Abstract: Cyclo-olefin-copolymer (COC) transparent films are currently the best choice for micro-fluidic bio-sensors for point-of-care diagnostic applications using optical signal detection. However, while the optical and mechanical properties of this polymer are extremely good, the adhesion of the bio-probes on this surface is not optimal, due to its chemical structure, that presents only saturated carbon bonds. The deposition of organo-silane molecules on the COC surface is one of the most effective ways to overcome this problem. But, for the surface functionalization, a surface physical treatment is necessary before the chemical modification of the COC surface. In this paper a comparison of the effectiveness of two different physical treatments, oxygen plasma and UV-ozone, is reported. In particular, the exposure time of the UV-Ozone treatment has been selected to avoid the problem of auto-fluorescence of the modified COC surface, that was observed also for relatively short UV exposure (around 10 minutes). An investigation of the reactive radicals created on the surface after the physical treatments and the following chemical modification with the organo-silane molecule (GPTES) has been performed using X-ray photoemission spectroscopy. The surface energy and morphology of the films have been also measured by contact angle and optical profilometry. Finally, the bio-probes adhesion performances of the COC surfaces obtained with the two physical treatments and the chemical modification were tested in a fluorescence-based assay, using an organic light emission diode to excite the fluorescence. We observed that the UV-ozone treatment allows to obtain a siloxane network with some reactive epoxy radicals on the COC surface, however, their quantity and distribution are less important and homogeneous than in the oxygen plasma treated surfaces. Keywords: cyclo-olefin-copolymers, organo-silane, oxygen plasma, UV-ozone, XPS, OLED Published in RUNG: 26.06.2024; Views: 1280; Downloads: 6 Full text (1,88 MB) This document has many files! More... |
5. Uncovering the nature of transient and metastable nonequilibrium phases in 1T − ▫$TaS_2$ ▫Tanusree Saha, Arindam Pramanik, Barbara Ressel, Alessandra Ciavardini, Fabio Frassetto, Federico Galdenzi, Luca Poletto, Arun Ravindran, Primož Rebernik Ribič, Giovanni De Ninno, 2023, original scientific article Abstract: Complex systems are characterized by strong coupling between different microscopic degrees of freedom. Photoexcitation of such materials can drive them into new transient and metastable hidden phases that may not have any counterparts in equilibrium. By exploiting femtosecond time- and angle-resolved photoemission spectroscopy, we probe the photoinduced transient phase and the recovery dynamics of the ground state in a complex material: the charge density wave (CDW)–Mott insulator 1T-TaS2. We reveal striking similarities between the band structures of the transient phase and the (equilibrium) structurally undistorted metallic phase, with evidence for the coexistence of the low-temperature Mott insulating phase and high-temperature metallic phase. Following the transient phase, we find that the restorations of the Mott and CDW orders begin around the same time. This highlights that the Mott transition is tied to the CDW structural distortion, although earlier studies have shown that the collapses of Mott and CDW phases are decoupled from each other. Interestingly, as the suppressed order starts to recover, a metastable phase emerges before the material recovers to the ground state. Our results demonstrate that it is the CDW lattice order that drives the material into this metastable phase, which is indeed a commensurate CDW–Mott insulating phase but with a smaller CDW amplitude. Moreover, we find that the metastable phase emerges only under strong photoexcitation (∼3.6 mJ/cm2) and has no evidence when the photoexcitation strength is weak (∼1.2 mJ/cm2). Keywords: angle resolved photoemission, time resolved photoemission, 2D materials, charge density wave, Mott insulator Published in RUNG: 15.01.2024; Views: 1841; Downloads: 6 Full text (2,30 MB) This document has many files! More... |
6. Modulation of charge transfer exciton dynamics in organic semiconductors using different structural arrangementsCristian Soncini, Abhishek Kumar, Federica Bondino, Elena Magnano, Matija Stupar, Barbara Ressel, Giovanni De Ninno, Antonis Papadopoulos, Efthymis Serpetzoglou, Emmanuel Stratakis, Maddalena Pedio, 2023, original scientific article Abstract: In devices based on organic semiconductors, aggregation and inter-molecular interactions play a key role in affecting the photo-physical and dynamical carrier properties of the material, potentially becoming a limiting factor to achieving high efficiency. As a consequence, a detailed understanding of the interplay between the film molecular structure and the material properties is essential to properly
design devices with optimized performance. Here we demonstrate how different molecular structural arrangements modulate the charge transfer (CT) dynamics in cobalt phthalocyanine (CoPc) thin films. By transient absorption spectroscopy and time-resolved photoemission spectroscopy, we study the influence of different CoPc structures on the dynamical electronic properties, the CoPc intra and inter- molecular de-excitation pathways up to 7 ns. We rationalize the ultrafast formation of triplet states in the CoPc through an electron exchange process between the single-occupied Co3dz2 orbital and p orbitals of the macrocycle, which obviate for an energetically unfavourable spin-flip. We found enhanced CT exciton lifetime in the case of the herringbone structure with respect to the brickwork one, possibly explainable by a more efficient CT exciton delocalization along the stacking axis. Keywords: charge transfer, organic molecules, time resolved spectroscopies Published in RUNG: 30.06.2023; Views: 2237; Downloads: 8 Link to file This document has many files! More... |
7. The challenge with high permittivity acceptors in organic solar cells : a case study with Y-series derivativesPeter Fürk, Suman Mallick, Thomas Rath, Matiss Reinfelds, Mingjian Wu, Erdmann Spiecker, Nikola Simic, Georg Haberfehlner, Gerald Kothleitner, Barbara Ressel, 2023, original scientific article Abstract: Y-series acceptors have brought a paradigm shift in terms of power conversion efficiencies of organic solar cells in the last few years. Despite their high performance, these acceptors still exhibit substantial energy loss, stemming from their low-permittivity nature. To tackle the energy loss situation, we prepared modified Y-series acceptors with improved permittivities via an alternative synthetic route. Keywords: solar cells, Y-series acceptors, morphology, efficiency measurements Published in RUNG: 29.06.2023; Views: 2121; Downloads: 14 Full text (3,82 MB) This document has many files! More... |
8. |
9. Light-Induced Magnetization at the NanoscaleJonas Wätzel, Primož Rebernik Ribič, Marcello Coreno, Miltcho Danailov, Christian David, Alexander Demidovich, Michele Di Fraia, Luca Giannessi, Klavs Hansen, Špela Krušič, Michele Manfredda, Michael Meyer, Andrej Mihelič, Najmeh Mirian, Oksana Plekan, Barbara Ressel, Benedikt Rosner, Alberto Simoncig, Simone Spampinati, Matija Stupar, Matjaž Žitnik, Marco Zangrando, Carlo Callegari, Jamal Berakdar, Giovanni De Ninno, 2022, original scientific article Keywords: FEL, orbital angular momentum, magnetisation Published in RUNG: 16.01.2023; Views: 1789; Downloads: 0 This document has many files! More... |
10. Hot-carrier and optical-phonon ultrafast dynamics in the topological insulator Bi2Te3 upon iron deposition on its surfaceM Weis, K Balin, T Sobol, A Ciavardini, G Vaudel, V Juvè, B Arnaud, Barbara Ressel, M Stupar, K.C. Prince, Giovanni De Ninno, P Ruello, J Szade, 2021, original scientific article Abstract: This paper presents a complete study of electronic structures and photoexcited carrier dynamics in topological insulators capped with iron and iron oxide. We combine static and time-resolved angle-resolved photoemission spectroscopies (ARPES, TR-ARPES) with time-resolved optical methods (transient optical reflectivity and transmission). Both single crystal and thin films of Bi2Te3 are studied. We show that monolayers of iron and iron oxide significantly affect the electronic band structure at the interface by shifting the Fermi level into the conduction band, which we explain by a band bending effect, and is confirmed by in situ XPS measurements Keywords: time resolved spectroscopies, topological insulators, interfaces Published in RUNG: 13.12.2021; Views: 3094; Downloads: 30 Full text (2,90 MB) |