1. Multi-layer palladium diselenide as a contact material for two-dimensional tungsten diselenide field-effect transistorsGennadiy Murastov, Muhammad Awais Aslam, Simon Leitner, Vadym Tkachuk, Iva Plutnarová, Egon Pavlica, Raul D. Rodriguez, Zdeněk Sofer, Aleksandar Matković, 2024, original scientific article Abstract: Tungsten diselenide (WSe2) has emerged as a promising ambipolar semiconductor material for field-effect transistors (FETs) due to its unique electronic properties, including a sizeable band gap, high carrier mobility, and remarkable on–off ratio. However, engineering the contacts to WSe2 remains an issue, and high contact barriers prevent the utilization of the full performance in electronic applications. Furthermore, it could be possible to tune the contacts to WSe2 for effective electron or hole injection and consequently pin the threshold voltage to either conduction or valence band. This would be the way to achieve complementary metal–oxide–semiconductor devices without doping of the channel material.This study investigates the behaviour of two-dimensional WSe2 field-effect transistors with multi-layer palladium diselenide (PdSe2) as a contact material. We demonstrate that PdSe2 contacts favour hole injection while preserving the ambipolar nature of the channel material. This consequently yields high-performance p-type WSe2 devices with PdSe2 van der Waals contacts. Further, we explore the tunability of the contact interface by selective laser alteration of the WSe2 under the contacts, enabling pinning of the threshold voltage to the valence band of WSe2, yielding pure p-type operation of the devices. Keywords: field-effect transistor, tungsten diselenide, van der Waals, two-dimensional materials Published in RUNG: 29.05.2024; Views: 896; Downloads: 6 Full text (3,06 MB) This document has many files! More... |
2. Air-water interface-assisted synthesis and charge transport characterization of quasi-2d polyacetylene films with enhanced electron mobility via ring-opening polymerization of pyrroleKejun Liu, Nadiia Pastukhova, Egon Pavlica, Gvido Bratina, Xinliang Feng, 2024, other component parts Abstract: Water surfaces catalyze some organic reactions more effectively, making them unique for 2D organic material synthesis. This report introduces a new synthesis method via surfactant-monolayer-assisted interfacial synthesis on water surfaces for ring-opening polymerization of pyrrole, producing distinct polypyrrole derivatives with polyacetylene backbones and ionic substitutions. The synthesis result in quasi 2D polyacetylene (q2DPA) film with enhanced charge transport behavior. We employed time-of-flight photoconductivity (TOFP) measurements using pulsed laser light of tunable wavelength for photoexcitation of the charge carriers within the q2DPA film. The charge transport was measured in the lateral direction as a function of external bias voltage ranging from 0 V to 200 V. We observed high electron mobility ({\mu}) of q2DPA reaching values of 375 cm2 V-1 s-1 at bias voltage Vb = -20V and photon energy of 3.8 eV. Keywords: air-water interface-assisted synthesis, time-of-flight photoconductivity, 2D polymers, quasi 2D polyacetylene, q2DPA Published in RUNG: 09.04.2024; Views: 1141; Downloads: 5 Full text (3,89 MB) This document has many files! More... |
3. High charge carrier mobility in thin films of quasi-two-dimensional polyacetylenes with sulphuric inter-chain linkersNadiia Pastukhova, Gvido Bratina, Egon Pavlica, 2023, published scientific conference contribution abstract Abstract: Quasi-two-dimensional conjugated polymers (q2DCP) have been described and recognised as crystalline, one- or two-layer polymer nanosheets prepared by arranging linear conjugated polymer chains in a 2D plane via non-covalent interchain interactions.[1,2] The extension of polymer dimensionality to two dimensions improves the alignment of individual polymer layers and overcomes the limitations associated with charge carrier hopping between polymer chains in one-dimensional and crosslinked polymers [3] Compared to other two-dimensional materials such as graphene or transition metal dichalcogenides, q2DCPs offer a high degree of flexibility in chemical design and are compatible with liquid-based processing methods. Various q2DCPs have been synthesized by surface active monolayer-assisted interfacial synthesis (SMAIS) [5]
The photoreaction of these materials is of particular interest due to their tunable properties such as band gap and associated wavelength-dependent photoexcitation, which enables a wide range of applications in optoelectronic devices. Using time-of-flight photoconductivity measurements (TOF-PC) [4], we investigate the charge transport properties of 2D polyacetylene prepared by the SMAIS method. A typical TOFP measurement of q2D polyacetylene is shown in Figure 1, using a focused nanosecond pulse laser at 325 nm and an electrode spacing of 250 µm. From the polarity of the bias voltage and the duration of the photocurrent, we can determine the polarity, velocity, and mobility of the photo-excited carriers as a function of the applied bias voltage and excitation wavelength. and observed electron mobility of 250 cm2/Vs, which is in the range of the most advanced organic single-crystal small-molecule semiconductors and almost an order of magnitude higher than linear polymeric semiconductors. We investigated the optical absorption and transmission on a lateral scale using scanning near-field optical microscopy (SNOM). Keywords: 2D polymers, organic semiconductors, q2DPA, SNOM, time-of-flight photoconductivity Published in RUNG: 25.03.2024; Views: 1032; Downloads: 2 Link to file This document has many files! More... |
4. |
5. |
6. Efficient electrochemical nitrogen fixation at iron phosphide (Fe_2P) catalyst in alkaline mediumBeata Rytelewska, Anna Chmielnicka, Takwa Chouki, Magdalena Skunik-Nuckowka, Shaghayegh Naghdi, Dominik Eder, Aleksandra Michalowska, Tomasz Ratajczyk, Egon Pavlica, Saim Emin, 2023, original scientific article Abstract: A catalytic system based on iron phosphide (Fe2P) has exhibited electrocatalytic activity toward N2-reduction reaction in alkaline medium (0.5 mol dm−3 NaOH). Based on voltammetric stripping-type electroanalytical measurements, Raman spectroscopic and spectrophotometric data, it can be stated that the Fe2P catalyst facilitates conversion of N2 to NH3, and the process is fairly selective with respect to the competing hydrogen evolution. A series of diagnostic electrocatalytic experiments (utilizing platinum nanoparticles and HKUST-1) have been proposed and performed to control purity of nitrogen gas and to probe presence of potential contaminants such as ammonia, nitrogen oxo-species and oxygen. On the whole, the results are consistent with the view that the interfacial reduced-iron (Fe0) centers, while existing within the network of P sites, induce activation and reduction of nitrogen, parallel to the water splitting (reduction) to hydrogen. It is apparent from Tafel plots and impedance measurements that mechanism and dynamics of nitrogen reduction depends on the applied electroreduction potential. The catalytic system exhibits certain tolerance with respect to the competitive hydrogen evolution and gives (during electrolysis at -0.4 V vs. RHE) the Faradaic efficiency, namely, the selectivity (molar) efficiency, toward production of NH3 on the level of 60%. Under such conditions, the NH3-yield rate has been found to be equal to 7.5 µmol cm−2 h−1 (21 µmol m−2 s−1). By referring to classic concepts of electrochemical kinetic analysis, the rate constant in heterogeneous units has been found to be on the moderate level of 1-2*10−4 cm s−1 (at -0.4 V). The above mentioned iron-phosphorous active sites, which are generated on surfaces of Fe2P particles, have also been demonstrated to exhibit strong catalytic properties during reductions of other electrochemically inert reactants, such as oxygen, nitrites and nitrates. Keywords: nitrogen reduction, alkaline medium, iron phosphide catalyst, ammonia, electrochemical determinations Published in RUNG: 30.11.2023; Views: 1392; Downloads: 5 Full text (2,67 MB) This document has many files! More... |
7. |
8. |
9. Time-of-flight photoconductivity investigation of high charge carrier mobility in ▫$Ti_3C_2T_x$▫ MXenes thin-filmJurij Urbančič, Erika Tomsic, Manisha Chhikara, Nadiia Pastukhova, Vadym Tkachuk, Alex Dixon, Andraž Mavrič, Payam Hashemi, Davood Sabaghi, Ali Shaygan Nia, Gvido Bratina, Egon Pavlica, 2023, original scientific article Abstract: Charge transport through a randomly oriented multilayered network of two-dimensional (2D) Ti3C2Tx (where Tx is the surface termination and corresponds to O, OH and F) was studied using time-of-flight photoconductivity (TOFP) method, which is highly sensitive to the distribution of charge carrier velocities. We prepared samples comprising Ti3C2Tx with thickness of 12 nm or 6-monolayers. MXene flakes of size up to 16 μm were randomly deposited on the surface by spin-coating from water solution. Using TOFP, we have measured electron mobility that reached values up to 279 cm2/Vs and increase with electric-field in a Poole-Frenkel manner. These values are approximately 50 times higher than previously reported field-effect mobility. Interestingly, our zero-electric-field extrapolate approaches electron mobility measured using terahertz absorption method, which represents intra-flake transport. Our data suggest that macroscopic charge transport is governed by two distinct mechanisms. The high mobility values are characteristic for the intra-flake charge transport via the manifold of delocalized states. On the other hand, the observed Poole-Frenkel dependence of charge carrier mobility on the electric field is typical for the disordered materials and suggest the existence of an important contribution of inter-flake hopping to the overall charge transport. Keywords: charge transport, multilayered network, flakes, time-of-flight photoconductivity, MXene exfoliation, high-mobility solution-cast thin-film, semiconducting MXene Published in RUNG: 31.03.2023; Views: 1762; Downloads: 9 Full text (1,97 MB) |
10. Nanoscopic roughness characterization of chitosan with buried graphene oxide for fuel cell applicationAhmed Kreta, Egon Pavlica, Mojca Božič, Gvido Bratina, 2023, published scientific conference contribution Keywords: AFM, chitosan, graphene oxide, fuel cells, membrane, roughness Published in RUNG: 01.03.2023; Views: 2037; Downloads: 7 Full text (2,74 MB) This document has many files! More... |