1. Periodic anti-phase boundaries and crystal superstructures in ▫$PtCu_3$▫ nanoparticles as fuel cell electrocatalystsAna Rebeka Kamšek, Anton Meden, Iztok Arčon, Primož Jovanovič, Martin Šala, Francisco Ruiz-Zepeda, Goran Dražić, Miran Gaberšček, Marjan Bele, Nejc Hodnik, 2023, original scientific article Published in RUNG: 19.09.2023; Views: 1490; Downloads: 9 Full text (2,15 MB) This document has many files! More... |
2. Resolving the dilemma of Fe-N-C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategyDavide Menga, Jian Liang Low, Yan-Sheng Li, Iztok Arčon, Burak Koyutürk, Friedrich Wagner, Francisco Ruiz-Zepeda, Miran Gaberšček, Beate Paulus, Tim-Patrick Fellinger, 2021, original scientific article Abstract: Combining the abundance and inexpensiveness of
their constituent elements with their atomic dispersion, atomically
dispersed Fe−N−C catalysts represent the most promising
alternative to precious-metal-based materials in proton exchange
membrane (PEM) fuel cells. Due to the high temperatures
involved in their synthesis and the sensitivity of Fe ions toward
carbothermal reduction, current synthetic methods are intrinsically
limited in type and amount of the desired, catalytically active Fe−
N4 sites, and high active site densities have been out of reach
(dilemma of Fe−N−C catalysts). We herein identify a paradigm
change in the synthesis of Fe−N−C catalysts arising from the
developments of other M−N−C single-atom catalysts. Supported
by DFT calculations we propose fundamental principles for the synthesis of M−N−C materials. We further exploit the proposed
principles in a novel synthetic strategy to surpass the dilemma of Fe−N−C catalysts. The selective formation of tetrapyrrolic Zn−N4
sites in a tailor-made Zn−N−C material is utilized as an active-site imprint for the preparation of a corresponding Fe−N−C catalyst.
By successive low- and high-temperature ion exchange reactions, we obtain a phase-pure Fe−N−C catalyst, with a high loading of
atomically dispersed Fe (>3 wt %). Moreover, the catalyst is entirely composed of tetrapyrrolic Fe−N4 sites. The density of
tetrapyrrolic Fe−N4 sites is more than six times as high as for previously reported tetrapyrrolic single-site Fe−N−C fuel cell catalysts Keywords: Fe-N-C catalysts, selective synthesis, tetrapyrrolic active sites, EXAFS, XANES, single atom, DFT Published in RUNG: 25.10.2021; Views: 2595; Downloads: 55 Link to full text This document has many files! More... |
3. Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium NanoparticlesLeonard Moriau, Marjan Bele, Živa Marinko, Francisco Ruiz-Zepeda, Gorazd Koderman, Martin Šala, Angelija Kjara Šurca, Janez Kovač, Iztok Arčon, Primož Jovanovič, Nejc Hodnik, Luka Suhadolnik, 2021, original scientific article Abstract: The development of affordable, low-iridium-loading,
scalable, active, and stable catalysts for the oxygen-evolution
reaction (OER) is a requirement for the commercialization of
proton-exchange membrane water electrolyzers (PEMWEs).
However, the synthesis of high-performance OER catalysts with
minimal use of the rare and expensive element Ir is very challenging
and requires the identification of electrically conductive and stable
high-surface-area support materials. We developed a synthesis
procedure for the production of large quantities of a nanocomposite
powder containing titanium oxynitride (TiONx) and Ir.
The catalysts were synthesized with an anodic oxidation process
followed by detachment, milling, thermal treatment, and the
deposition of Ir nanoparticles. The anodization time was varied to grow three different types of nanotubular structures exhibiting different lengths and wall thicknesses and thus a variety of properties. A comparison of milled samples with different degrees of nanotubular clustering and morphology retention, but with identical
chemical compositions and Ir nanoparticle size distributions and dispersions, revealed that the nanotubular support morphology is
the determining factor governing the catalyst’s OER activity and stability. Our study is supported by various state-of-the-art
materials’ characterization techniques, like X-ray photoelectron spectroscopy, scanning and transmission electron microscopies, Xray powder diffraction and absorption spectroscopy, and electrochemical cyclic voltammetry. Anodic oxidation proved to be a very suitable way to produce high-surface-area powder-type catalysts as the produced material greatly outperformed the IrO2 benchmarks
as well as the Ir-supported samples on morphologically different TiONx from previous studies. The highest activity was achieved for the sample prepared with 3 h of anodization, which had the most appropriate morphology for the effective removal of oxygen
bubbles. Keywords: electrocatalysis, oxygen-evolution reaction, TiONx-Ir powder catalyst, iridium nanoparticles, anodic oxidation, morphology−activity correlation Published in RUNG: 04.01.2021; Views: 3128; Downloads: 0 This document has many files! More... |
4. Electrochemical dissolution of iridium and iridium oxide particles in acidic media : transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry and X-ray absorption spectroscopy studyPrimož Jovanovič, Nejc Hodnik, Francisco Ruiz-Zepeda, Iztok Arčon, Barbara Jozinović, Milena Zorko, Marjan Bele, Martin Šala, Vid Simon Šelih, Samo B. Hočevar, Miran Gaberšček, 2017, original scientific article Abstract: Iridium based particles as the most promising proton exchange membrane electrolyser electrocatalysts were investigated
by transmission electron microscopy (TEM), and by coupling of electrochemical flow cell (EFC) with online inductively
coupled plasma mass spectrometer (ICP-MS). Additionally, a thin-film rotating disc electrode (RDE), an identical location transmission
and scanning electron microscopy (IL-TEM and IL-SEM) as well as an X-ray absorption spectroscopy (XAS) studies have
been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that iridium
particles dissolved already well below oxygen evolution reaction (OER) potentials, presumably induced by iridium surface oxidation
and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile type IrO2 particles (T-IrO2)
are substantially more stable and less active in comparison to as prepared metallic (A-Ir) and electrochemically pretreated (E-Ir)
analogues. Interestingly, under OER relevant conditions E-Ir particles exhibit superior stability and activity owing to the altered
corrosion mechanism where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance,
electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low temperature
electrochemical hydrogen production device, namely a proton exchange membrane electrolyser. Keywords: Iridium Oxide Par-ticles, Electrochemical Dissolution of Iridium, Ir L3-edge XANES Published in RUNG: 23.08.2017; Views: 4459; Downloads: 0 This document has many files! More... |