Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Microbial volatiles as diagnostic biomarkers of bacterial lung infection in mechanically ventilated patients
Waqar M Ahmed, Dominic Fenn, Iain R. White, Breanna Dixon, Tamara M E Nijsen, Hugo H Knobel, Paul Brinkman, Pouline M P van Oort, Marcus J Schultz, Paul Dark, Royston Goodacre, Timothy Felton, Lieuwe D J Bos, Stephen J Fowler, 2022, original scientific article

Abstract: Background Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as non-invasive biomarkers of infection to support clinical diagnosis. Methods In this study, we investigated the diagnostic potential of in vitro confirmed mVOCs in the exhaled breath of patients under mechanically ventilation from the BreathDx study. Samples were analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Results Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45/89 patients and S. aureus was the most commonly identified pathogen (n = 15). Out of 19 mVOCs detected in the in vitro culture headspace of four common respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of two mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal p < 0.01. AUROC = 0.81-0.87 and 3-methylbutanoic acid p = 0.01. AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures which are known to metabolise tryptophan (Escherichia coli, Klebsiella oxytoca and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (p = 0.034) and other pathogen-positive (p = 0.049) samples. Conclusions This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multi-centre clinical studies.
Keywords: Breath, VOCs, infection, respiratory pathogens, VAP
Published in RUNG: 28.11.2022; Views: 1164; Downloads: 0
This document has many files! More...

2.
Untargeted molecular analysis of exhaled breath as a diagnostic test for ventilator-associated lower respiratory tract infections (BreathDx)
Pouline M. van Oort, Tamara M. E. Nijsen, Iain R. White, Hugo Knobel, Timothy Felton, Nicholas J. W. Rattray, Oluwasola Lawal, Murtaza Bulut, Waqar Ahmed, Antonio Artigas, 2021, short scientific article

Abstract: Patients suspected of ventilator-associated lower respiratory tract infections (VA-LRTIs) commonly receive broad-spectrum antimicrobial therapy unnecessarily. We tested whether exhaled breath analysis can discriminate between patients suspected of VA-LRTI with confirmed infection, from patients with negative cultures. Breath from 108 patients suspected of VA-LRTI was analysed by gas chromatography-mass spectrometry. The breath test had a sensitivity of 98% at a specificity of 49%, confirmed with a second analytical method. The breath test had a negative predictive value of 96% and excluded pneumonia in half of the patients with negative cultures. Trial registration number: UKCRN ID number 19086, registered May 2015.
Keywords: ventilator-associated pneumonia, breath analysis, volatile organic compounds, metabolomics, intensive care, hospital acquired infections
Published in RUNG: 07.09.2021; Views: 4041; Downloads: 0
This document has many files! More...

3.
TD/GC–MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputum
Iain R. White, Oluwasola Lawal, Hugo Knobel, Weda Hans, Tamara M E Nijsen, Royston Goodacre, Stephen J Fowler, Waqar M Ahmed, Antonio Artigas, Jonathan Barnard-Smith, Lieuwe D Bos, Marta Camprubi, Luis Coelho, Paul Dark, Alan Davie, Emili Diaz, Gemma Goma, Timothy Felton, Jan H Leopold, Pouline M P van Oort, Pedro Póvoa, Craig Portsmouth, 2018, original scientific article

Abstract: Introduction: Infections such as ventilator-associated pneumonia (VAP) can be caused by one or more pathogens. Current methods for identifying these pathogenic microbes often require invasive sampling, and can be time consuming, due to the requirement for prolonged cultural enrichment along with selective and differential plating steps. This results in delays in diagnosis which in such critically ill patients can have potentially life-threatening consequences. Therefore, a non-invasive and timely diagnostic method is required. Detection of microbial volatile organic compounds (VOCs) in exhaled breath is proposed as an alternative method for identifying these pathogens and may distinguish between mono- and poly-microbial infections. Objectives: To investigate volatile metabolites that discriminate between bacterial mono- and co-cultures. Methods: VAP-associated pathogens Enterobacter cloacae and Pseudomonas aeruginosa were cultured individually and together in artificial sputum medium for 24 h and their headspace was analysed for potential discriminatory VOCs by thermal desorption gas chromatography–mass spectrometry. Results: Of the 70 VOCs putatively identified, 23 were found to significantly increase during bacterial culture (i.e. likely to be released during metabolism) and 13 decreased (i.e. likely consumed during metabolism). The other VOCs showed no transformation (similar concentrations observed as in the medium). Bacteria-specific VOCs including 2-methyl-1-propanol, 2-phenylethanol, and 3-methyl-1-butanol were observed in the headspace of axenic cultures of E. cloacae, and methyl 2-ethylhexanoate in the headspace of P. aeruginosa cultures which is novel to this investigation. Previously reported VOCs 1-undecene and pyrrole were also detected. The metabolites 2-methylbutyl acetate and methyl 2-methylbutyrate, which are reported to exhibit antimicrobial activity, were elevated in co-culture only. Conclusion: The observed VOCs were able to differentiate axenic and co-cultures. Validation of these markers in exhaled breath specimens could prove useful for timely pathogen identification and infection type diagnosis.
Keywords: Bacteria, Enterobacter cloacae, Gas Chromatography-Mass Spectrometry, Infection, Pseudomonas aeruginosa, Volatile organic compounds
Published in RUNG: 18.07.2019; Views: 4389; Downloads: 114
.pdf Full text (1,29 MB)

Search done in 0.03 sec.
Back to top