21. Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MSStephen J Fowler, Roy Goodacre, Iain R White, Tamara M E Nijsen, Waqar M Ahmed, Howbeer Muhamadali, Oluwasola Lawal, 2018, original scientific article Abstract: Ventilator-associated pneumonia (VAP) is a healthcare-acquired infection arising from the invasion of the lower respiratory tract by opportunistic pathogens in ventilated patients. The current method of diagnosis requires the culture of an airway sample such as bronchoalveolar lavage, which is invasive to obtain and may take up to seven days to identify a causal pathogen, or indeed rule out infection. While awaiting results, patients are administered empirical antibiotics; risks of this approach include lack of effect on the causal pathogen, contribution to the development of antibiotic resistance and downstream effects such as increased length of intensive care stay, cost, morbidity and mortality. Specific biomarkers which could identify causal pathogens in a timely manner are needed as they would allow judicious use of the most appropriate antimicrobial therapy. Volatile organic compound (VOC) analysis in exhaled breath is proposed as an alternative due to its non-invasive nature and its potential to provide rapid diagnosis at the patient's bedside. VOCs in exhaled breath originate from exogenous, endogenous, as well as microbial sources. To identify potential markers, VAP-associated pathogens Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus were cultured in both artificial sputum medium and nutrient broth, and their headspaces were sampled and analysed for VOCs. Previously reported volatile markers were identified in this study, including indole and 1-undecene, alongside compounds that are novel to this investigation, cyclopentanone and 1-hexanol. We further investigated media components (substrates) to identify those that are essential for indole and cyclopentanone production, with potential implications for understanding microbial metabolism in the lung. Found in: osebi Keywords: bacteria, exhaled breath, infection, ventilator-associated pneumonia, volatile organic compounds Published: 18.07.2019; Views: 2105; Downloads: 0 |
22. Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): An overview of the REPARTEE experiment and its conclusionsGavin J Phillips, Carole Helfter, Chiara F Di Marco, Eiko Nemitz, Fay Davies, Janet F Barlow, Tyrone Dunbar, Iain R White, Dudley E Shallcross, Stephen J Henshaw, K Fredrik Peterson, Brian Davison, Damien Martin, Ben Langford, C Nicholas Hewitt, Stephen M Ball, Justin M Langridge, A K Benton, Roderick L Jones, Paul I Williams, John Whitehead, Martin W Gallagher, Claire Martin, James R Dorsey, Hugh Coe, James D Allan, William J Bloss, Alistair J Thorpe, David C S Beddows, Manuel DallOsto, Roy M Harrison, Steven Smith, 2012, review article Abstract: The Regents Park and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160-190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types. Found in: osebi Keywords: megacity, trace gas, urban atmosphere, atmospheric transport, chemical composition, aerosol Published: 18.07.2019; Views: 2460; Downloads: 0
Fulltext (4,66 MB) |
23. Development of an adaptable headspace sampling method for metabolic profiling of the fungal volatomeStephen J Fowler, Nicholas D Read, Royston Goodacre, Michael J Bromley, Tamara M Nijsen, Oluwasola Lawal, Iain R White, Pavlos Geranios, Waqar M Ahmed, 2018, original scientific article Abstract: Pulmonary aspergillosis can cause serious complications in people with a suppressed immune system. Volatile metabolites emitted by Aspergillus spp. have shown promise for early detection of pathogenicity. However, volatile profiles require further research, as effective headspace analysis methods are required for extended chemical coverage of the volatome; in terms of both very volatile and semi-volatile compounds. In this study, we describe a novel adaptable sampling method in which fungal headspace samples can be sampled continuously throughout a defined time period using both active (pumped) and passive (diffusive) methods, with the capability for samples to be stored for later off-line analysis. For this method we utilise thermal desorption-gas chromatography-mass spectrometry to generate volatile metabolic profiles using Aspergillus fumigatus as the model organism. Several known fungal-specific volatiles associated with secondary metabolite biosynthesis (including α-pinene, camphene, limonene, and several sesquiterpenes) were identified. A comparison between the wild-type A. fumigatus with a phosphopantetheinyl transferase null mutant strain (ΔpptA) that is compromised in secondary metabolite synthesis, revealed reduced production of sesquiterpenes. We also showed the lack of terpene compounds production during the early growth phase, whilst pyrazines were identified in both early and late growth phases. We have demonstrated that the fungal volatome is dynamic and it is therefore critically necessary to sample the headspace across several time periods using a combination of active and passive sampling techniques to analyse and understand this dynamism. Found in: osebi Keywords: Volatile Organic Compounds, Fungi, Mycelial growth Published: 18.07.2019; Views: 2140; Downloads: 0
Fulltext (712,24 KB) |
24. Breathomics and its Application for Disease Diagnosis: A Review of Analytical Techniques and ApproachesEnzo A Palombo, Konstantinos A Kouremenos, Ding Y Oh, Iain R White, David J Beale, Avinash V Karpe, Oliver A H Jones, 2018, independent scientific component part or a chapter in a monograph Abstract: The application of metabolomics to an ever-greater variety of sample types is a key focus of systems biology research. Recently, there has been a strong focus on applying these approaches toward the rapid analysis of metabolites found in non-invasively acquired samples, such as exhaled breath (also known as ‘breathomics’). The sampling process involved in collecting exhaled breath is nonintrusive and comparatively low-cost. It uses a series of globally approved methods and provides researchers with easy access to the metabolites secreted by the human body. Owing to its accuracy and rapid nature, metabolomic analysis of breath is a rapidly growing field that has proven effective in detecting and diagnosing the early stages of numerous diseases and infections. This review discusses the various collection and analysis methods currently applied in breathomics research. Some of the salient research completed in this field to date is also assessed and discussed in order to provide a basis for possible future scientific directions. Found in: osebi Keywords: Metabolomics, breath research, VOCs, breathomics Published: 22.07.2019; Views: 2384; Downloads: 0
Fulltext (25,96 MB) |
25. Capturing and Storing Exhaled Breath for Offline AnalysisStephen J Fowler, Iain R White, 2019, independent scientific component part or a chapter in a monograph Abstract: In this chapter we will summarize and discuss methods for the capture and storage of exhaled breath, prior to offline (and indirect online) analysis. We will detail and compare methods currently in use, including their applications, key strengths, and limitations. In synthesizing the best features of each technique, we will propose an ideal standardized breath sampling solution, and give a personal vision on the next steps to be taken in this exciting area of breath research. Found in: osebi Keywords: Breath analysis, Breath sampling, Offline analysis, Thermal desorption, Gas chromatography-mass spectrometry Published: 22.07.2019; Views: 2525; Downloads: 0
Fulltext (36,24 MB) |
26. Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: a proof-of-concept studyIain R White, Pouline M van Oort, 2019, original scientific article Abstract: Volatile organic compounds in breath can reflect host and pathogen metabolism and might be used to diagnose pneumonia. We hypothesized that rats with Streptococcus pneumoniae (SP) or Pseudomonas aeruginosa (PA) pneumonia can be discriminated from uninfected controls by thermal desorption-gas chromatography-mass-spectrometry (TD-GC-MS) and selected ion flow tube-mass spectrometry (SIFT-MS) of exhaled breath. Male adult rats (n = 50) received an intratracheal inoculation of 1) 200 µl saline, or 2) 1 × 107 colony-forming units of SP or 3) 1 × 107 CFU of PA. Twenty-four hours later the rats were anaesthetized, tracheotomized, and mechanically ventilated. Exhaled breath was analyzed via TD-GC-MS and SIFT-MS. Area under the receiver operating characteristic curves (AUROCCs) and correct classification rate (CCRs) were calculated after leave-one-out cross-validation of sparse partial least squares-discriminant analysis. Analysis of GC-MS data showed an AUROCC (95% confidence interval) of 0.85 (0.73-0.96) and CCR of 94.6% for infected versus noninfected animals, AUROCC of 0.98 (0.94-1) and CCR of 99.9% for SP versus PA, 0.92 (0.83-1.00), CCR of 98.1% for SP versus controls and 0.97 (0.92-1.00), and CCR of 99.9% for PA versus controls. For these comparisons the SIFT-MS data showed AUROCCs of 0.54, 0.89, 0.63, and 0.79, respectively. Exhaled breath analysis discriminated between respiratory infection and no infection but with even better accuracy between specific pathogens. Future clinical studies should not only focus on the presence of respiratory infection but also on the discrimination between specific pathogens. Found in: osebi Keywords: biomarkers, exhaled breath analysis, infection, pneumonia Published: 22.07.2019; Views: 2265; Downloads: 0
Fulltext (320,58 KB) |
27. Microbial volatiles as diagnostic biomarkers of bacterial lung infection in mechanically ventilated patientsLieuwe D J Bos, Stephen J Fowler, Timothy Felton, Royston Goodacre, Marcus J Schultz, Paul Dark, Pouline M P van Oort, Tamara M E Nijsen, Hugo H Knobel, Paul Brinkman, Breanna Dixon, Dominic Fenn, Iain R White, Waqar M Ahmed, 2022, original scientific article Abstract: Background
Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as non-invasive biomarkers of infection to support clinical diagnosis.
Methods
In this study, we investigated the diagnostic potential of in vitro confirmed mVOCs in the exhaled breath of patients under mechanically ventilation from the BreathDx study. Samples were analysed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS).
Results
Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45/89 patients and S. aureus was the most commonly identified pathogen (n = 15). Out of 19 mVOCs detected in the in vitro culture headspace of four common respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of two mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal p < 0.01. AUROC = 0.81-0.87 and 3-methylbutanoic acid p = 0.01. AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures which are known to metabolise tryptophan (Escherichia coli, Klebsiella oxytoca and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (p = 0.034) and other pathogen-positive (p = 0.049) samples.
Conclusions
This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multi-centre clinical studies. Found in: osebi Keywords: Breath, VOCs, infection, respiratory pathogens, VAP Published: 28.11.2022; Views: 248; Downloads: 0
Fulltext (1,25 MB) |
28. Year-long measurements of C1-C3 halocarbons at an urban site and their relationship with meteorological parametersDudley E Shallcross, Brian G R Greally, Alison C Rivett, Damien Martin, Alan Knights, Graham Nickless, Ben Golledge, Iain R White, M Iqbal Mead, M Anwar K Khan, 2009, original scientific article Abstract: The mixing ratios of 11 C1–C3 halocarbons have been measured using a GC–twin‐linked ECD system over the period from October 2004 to December 2005 at an urban site in Bristol, UK. Time series and seasonal variations of the halocarbons were analysed over the period to determine biogenic and anthropogenic sources and sinks. Correlations between the target halocarbons were also observed, suggesting common sources within the area. Wind rose plots for all halocarbons have been used to assist in the determination of halocarbons sources. Halocarbon concentrations are highest at low‐wind speeds and decrease as wind speed increases, a few species (CCl4 and CH3Cl most notably) rise at very high‐wind speeds suggesting release from the Bristol Channel. Found in: osebi Keywords: adsorption–desorption system, anthropogenic halocarbons, biogenic halocarbons, electron capture detector, gas chromatography, methyl bromide Published: 18.07.2019; Views: 2160; Downloads: 0
Fulltext (897,06 KB) |
29. Tracer concentration profiles measured in central London as part of the REPARTEE campaignDamien Martin, K Fredrik Petersson, Iain R White, Stephen H Henshaw, Graham Nickless, Amy Lovelock, Janet F Barlow, Tyrone Dunbar, Curtis R Wood, Dudley E. Shallcross, 2011, original scientific article Abstract: There have been relatively few tracer experiments carried out that have looked at vertical plume spread in urban areas. In this paper we present results from two tracer (cyclic perfluorocarbon) experiments carried out in 2006 and 2007 in central London centred on the BT Tower as part of the REPARTEE (Regent's Park and Tower Environmental Experiment) campaign. The height of the tower gives a unique opportunity to study vertical dispersion profiles and transport times in central London. Vertical gradients are contrasted with the relevant Pasquill stability classes. Estimation of lateral advection and vertical mixing times are made and compared with previous measurements. Data are then compared with a simple operational dispersion model and contrasted with data taken in central London as part of the DAPPLE campaign. This correlates dosage with non-dimensionalised distance from source. Such analyses illustrate the feasibility of the use of these empirical correlations over these prescribed distances in central London. Found in: osebi Keywords: advection, concentration (composition), dispersion, tracer, urban atmosphere, vertical mixing, vertical profile Published: 18.07.2019; Views: 2325; Downloads: 0
Fulltext (1,49 MB) |
30. TD/GC–MS analysis of volatile markers emitted from mono- and co-cultures of Enterobacter cloacae and Pseudomonas aeruginosa in artificial sputumCraig Portsmouth, Pedro Póvoa, Jan H Leopold, Pouline M P van Oort, Emili Diaz, Gemma Goma, Timothy Felton, Paul Dark, Alan Davie, Luis Coelho, Lieuwe D Bos, Marta Camprubi, Antonio Artigas, Jonathan Barnard-Smith, Waqar M Ahmed, Stephen J Fowler, Tamara M E Nijsen, Royston Goodacre, Weda Hans, Hugo Knobel, Oluwasola Lawal, Iain R White, 2018, original scientific article Abstract: Introduction: Infections such as ventilator-associated pneumonia (VAP) can be caused by one or more pathogens. Current methods for identifying these pathogenic microbes often require invasive sampling, and can be time consuming, due to the requirement for prolonged cultural enrichment along with selective and differential plating steps. This results in delays in diagnosis which in such critically ill patients can have potentially life-threatening consequences. Therefore, a non-invasive and timely diagnostic method is required. Detection of microbial volatile organic compounds (VOCs) in exhaled breath is proposed as an alternative method for identifying these pathogens and may distinguish between mono- and poly-microbial infections. Objectives: To investigate volatile metabolites that discriminate between bacterial mono- and co-cultures. Methods: VAP-associated pathogens Enterobacter cloacae and Pseudomonas aeruginosa were cultured individually and together in artificial sputum medium for 24 h and their headspace was analysed for potential discriminatory VOCs by thermal desorption gas chromatography–mass spectrometry. Results: Of the 70 VOCs putatively identified, 23 were found to significantly increase during bacterial culture (i.e. likely to be released during metabolism) and 13 decreased (i.e. likely consumed during metabolism). The other VOCs showed no transformation (similar concentrations observed as in the medium). Bacteria-specific VOCs including 2-methyl-1-propanol, 2-phenylethanol, and 3-methyl-1-butanol were observed in the headspace of axenic cultures of E. cloacae, and methyl 2-ethylhexanoate in the headspace of P. aeruginosa cultures which is novel to this investigation. Previously reported VOCs 1-undecene and pyrrole were also detected. The metabolites 2-methylbutyl acetate and methyl 2-methylbutyrate, which are reported to exhibit antimicrobial activity, were elevated in co-culture only. Conclusion: The observed VOCs were able to differentiate axenic and co-cultures. Validation of these markers in exhaled breath specimens could prove useful for timely pathogen identification and infection type diagnosis. Found in: osebi Keywords: Bacteria, Enterobacter cloacae, Gas Chromatography-Mass Spectrometry, Infection, Pseudomonas aeruginosa, Volatile organic compounds Published: 18.07.2019; Views: 2330; Downloads: 98
Fulltext (1,29 MB) |