1. Massive stars exploding in a He-rich circumstellar medium - X : flash spectral features in the Type Ibn SN 2019cj and observations of SN 2018jmtZ.-Y. Wang, A. Pastorello, K. Maeda, A. Reguitti, Y.-Z. Cai, D. Andrew Howell, S. Benetti, Mateusz Bronikowski, E. Concepcion, Tanja Petrushevska, 2024, original scientific article Abstract: We present optical and near-infrared observations of two Type Ibn supernovae (SNe), SN\,2018jmt and SN\,2019cj. Their light curves have rise times of about ten days, reaching an absolute peak magnitude of $M_g$(SN\,2018jmt) = $-$19.07 pm 0.37 and $M_V$(SN\,2019cj) = $-$18.94 pm 0.19 mag, respectively. The early-time spectra of SN\,2018jmt are dominated by a blue continuum, accompanied by narrow (600$-$1000 km $) He i lines with the P-Cygni profile. At later epochs, the spectra become more similar to those of the prototypical SN Ibn 2006jc. At early phases, the spectra of SN\,2019cj show flash ionisation emission lines of C iii N iii and He ii superposed on a blue continuum. These features disappear after a few days, and then the spectra of SN\,2019cj evolve similarly to those of SN\,2018jmt. The spectra indicate that the two SNe exploded within a He-rich circumstellar medium (CSM) lost by the progenitors a short time before the explosion. We modelled the light curves of the two SNe Ibn to constrain the progenitor and the explosion parameters. The ejecta masses are consistent with either what is expected for a canonical SN Ib (sim 2 odot $) or for a massive Wolf Rayet star ($>$ sim 4 M$_ odot $), with the kinetic energy on the order of $10^ $ erg. The lower limit on the ejecta mass ($>$ sim 2 M odot $) argues against a scenario involving a relatively low-mass progenitor (e.g. $M_ ZAMS $ sim 10 M$_ odot $). We set a conservative upper limit of sim 0.1 M$_ odot $ for the 56Ni masses in both SNe. From the light curve modelling, we determined a two-zone CSM distribution, with an inner, flat CSM component and an outer CSM with a steeper density profile. The physical properties of SN\,2018jmt and SN\,2019cj are consistent with those expected from the core collapse of relatively massive envelope-stripped stars. Keywords: supernovae Published in RUNG: 06.11.2024; Views: 459; Downloads: 3 Link to file This document has many files! More... |
2. Supernova spectra below strong circumstellar interactionGiorgos Leloudas, E.Y. Hsiao, Joel Johansson, Keichi Maeda, T.J. Moriya, Jakob Nordin, Tanja Petrushevska, J. M. Silverman, Jesper Sollerman, M.D. Stritzinger, Francesco Taddia, D. Xu, 2015, original scientific article Abstract: We construct spectra of supernovae (SNe) interacting strongly with a circumstellar medium (CSM) by adding SN templates, a blackbody
continuum, and an emission-line spectrum. In a Monte Carlo simulation we vary a large number of parameters, such as the SN
type, brightness and phase, the strength of the CSM interaction, the extinction, and the signal to noise ratio (S/N) of the observed
spectrum. We generate more than 800 spectra, distribute them to ten different human classifiers, and study how the different simulation
parameters affect the appearance of the spectra and their classification. The SNe IIn showing some structure over the continuum were
characterized as “SNe IInS” to allow for a better quantification. We demonstrate that the flux ratio of the underlying SN to the
continuum fV is the single most important parameter determining whether a spectrum can be classified correctly. Other parameters,
such as extinction, S/N, and the width and strength of the emission lines, do not play a significant role. Thermonuclear SNe get
progressively classified as Ia-CSM, IInS, and IIn as fV decreases. The transition between Ia-CSM and IInS occurs at fV ∼ 0.2−0.3. It
is therefore possible to determine that SNe Ia-CSM are found at the (un-extincted) magnitude range −19.5 > M > −21.6, in very good
agreement with observations, and that the faintest SN IIn that can hide a SN Ia has M = −20.1. The literature sample of SNe Ia-CSM
shows an association with 91T-like SNe Ia. Our experiment does not support that this association can be attributed to a luminosity bias
(91T-like being brighter than normal events). We therefore conclude that this association has real physical origins and we propose that
91T-like explosions result from single degenerate progenitors that are responsible for the CSM. Despite the spectroscopic similarities
between SNe Ibc and SNe Ia, the number of misclassifications between these types was very small in our simulation and mostly at low
S/N. Combined with the SN luminosity function needed to reproduce the observed SN Ia-CSM luminosities, it is unlikely that SNe Ibc
constitute an important contaminant within this sample. We show how Type II spectra transition to IIn and how the Hα profiles vary
with fV . SNe IIn fainter than M = −17.2 are unable to mask SNe IIP brighter than M = −15. A more advanced simulation, including
radiative transfer, shows that our simplified model is a good first order approximation. The spectra obtained are in good agreement
with real data. Keywords: supernovae Published in RUNG: 22.01.2018; Views: 4535; Downloads: 0 This document has many files! More... |