Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Supergalactic Structure of Energy-Angle Correlations
P. Sokolsky, J. P. Lundquist, 2020, published scientific conference contribution

Abstract: Evidence for the supergalactic structure of multiplets (energy-angle correlations) has previously been shown using ultra-high energy cosmic ray (UHECR) data from Telescope Array (TA) with energies above 10^19 eV. The supergalactic deflection hypothesis (that UHECR sources and intervening magnetic fields are correlated) is measured by the all-sky behavior of the strength of intermediate-scale correlations. The multiplets are measured in spherical surface wedge bins of the field-of-view to account for uniform and random magnetic fields. The structure found is consistent with the previously published energy spectrum anisotropy results of TA and toy-model simulations of a supergalactic magnetic sheet. The 7 year data post-trial significance of this feature appearing by chance, on an isotropic sky, was found by Monte Carlo simulation to be ∼4σ. The analysis has now been applied to 10 years of data.
Found in: osebi
Keywords: Cosmic rays, UHECR, energy spectrum, magnetic deflection, large-scale structure, supergalactic, multiplets
Published: 27.04.2020; Views: 1089; Downloads: 43
.pdf Fulltext (1,66 MB)

2.
Supergalactic Structure of Multiplets with the Telescope Array Surface Detector
P. Sokolsky, J. P. Lundquist, 2019, published scientific conference contribution

Abstract: Evidence of supergalactic structure of multiplets has been found for ultra-high energy cosmic rays (UHECR) with energies above 10^19 eV using 7 years of data from the Telescope Array (TA) surface detector. The tested hypothesis is that UHECR sources, and intervening magnetic fields, may be correlated with the supergalactic plane, as it is a fit to the average matter density within the GZK horizon. This structure is measured by the average behavior of the strength of intermediate-scale correlations between event energy and position (multiplets). These multiplets are measured in wedge-like shapes on the spherical surface of the fieldof-view to account for uniform and random magnetic fields. The evident structure found is consistent with toy-model simulations of a supergalactic magnetic sheet and the previously published Hot/Coldspot results of TA. The post-trial probability of this feature appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be ~4.5σ.
Found in: osebi
Keywords: UHECR, cosmic rays, energy spectrum, anisotropy, large-scale structure, magnetic deflection
Published: 28.04.2020; Views: 1194; Downloads: 79
.pdf Fulltext (1,38 MB)

Search done in 0 sec.
Back to top