Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 20 / 44
First pagePrevious page12345Next pageLast page
11.
Speckle interferometric investigation of argon pressure-induced surface roughness modifications in RF-sputtered MoO[sub]3 film
S. Soumya, R. Arun Kumar, S. Sreejyothi, Vimal Raj, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2021, original scientific article

Abstract: Film quality analysis is of more considerable signifcance due to its diversifed applications in various felds of technology. The present work reports the speckle interferometric analysis of the argon pressure-induced surface roughness modifcations of RF sputtered MoO3 flms. The paper suggests a new method of surface quality analysis of thin flms through a parameter δ, which is the diference between the initial and fnal inertia moment values in the study of the thermal-induced dynamic speckle pattern. The limitations of root mean square surface roughness analysis of the atomic force microscopic image of the flms is also exemplifed. The research suggests that argon pressure plays a vital role in the surface property of RF sputtered flms and also that the dynamic speckle analysis can give precise information about the quality of flms. The contour plot of particle displacement vector under thermal stress, suggests the degree of uniformity in the distribution of particles in the flm.
Keywords: speckle pattern interferometry, time history of speckle pattern, cross correlation, inertia moment
Published in RUNG: 04.07.2022; Views: 1156; Downloads: 0
This document has many files! More...

12.
Weathering induced morphological modification on the thermal diffusivity of natural pyrrhotite : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vijayakumar Gokul, Vimal Raj, R. Manu Raj, S. N. Kumar, Sankaranarayana Iyer Sankararaman, 2021, original scientific article

Abstract: Natural pyrrhotites have gained significant attention due to their interesting electronic, antimicrobial, and chemical properties. The present work attempts to explore the morphology-induced modifications in the thermal characteristics of natural pyrrhotite due to ageing. The morphological, elemental, structure, optical, and thermal characterisations help in understanding the effect of ageing. The effects of five years of ageing of the sample are (i) Field Emission Scanning Electron Microscopic analysis reveals a morphological transformation from flakes to agglomerated powder, (ii) elemental analyses suggest the ageing induced compositional modification (iii) the Tauc plot analysis shows a bandgap energy modification from 1.46 eV to 1.92 eV, (iv) X-ray Diffraction (XRD), Fourier Transform Infrared, and X-ray photoelectron spectroscopic studies affirm the formation of oxy-hydroxides (v) the XRD data indicates an increase of dislocation density, and (vi) Photoluminescence study shows a deep violet emission evidenced through the CIE plot. The study by the thermal lens technique shows a lowering of thermal diffusivity study by 23%, due to the morphological modifications, adsorbed/chemisorbed hydroxyl groups, and the formation of secondary compounds due to oxidation and weathering. The phonon boundary scattering, weathering induced smaller grain size, reduced phonon mean free path, and point defects also account for the lowering of the thermal diffusivity value and thereby influencing its properties.
Keywords: pyrrhotite, thermal diffusivity, thermal lens, ageing, morphology
Published in RUNG: 30.06.2022; Views: 1112; Downloads: 6
URL Link to full text
This document has many files! More...

13.
Downscaling of sample entropy of nanofluids by carbon allotropes : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vimal Raj, S. Sreejyothi, K. Satheesh Kumar, Sankaranarayana Iyer Sankararaman, 2020, original scientific article

Abstract: The work reported in this paper is the first attempt to delineate the molecular or particle dynamics from the thermal lens signal of carbon allotropic nanofluids (CANs), employing time series and fractal analyses. The nanofluids of multi-walled carbon nanotubes and graphene are prepared in base fluid, coconut oil, at low volume fraction and are subjected to thermal lens study. We have studied the thermal diffusivity and refractive index variations of the medium by analyzing the thermal lens (TL) signal. By segmenting the TL signal, the complex dynamics involved during its evolution is investigated through the phase portrait, fractal dimension, Hurst exponent, and sample entropy using time series and fractal analyses. The study also explains how the increase of the photothermal energy turns a system into stochastic and anti-persistent. The sample entropy (S) and refractive index analyses of the TL signal by segmenting into five regions reveal the evolution of S with the increase of enthalpy. The lowering of S in CAN along with its thermal diffusivity (50%–57% below) as a result of heat-trapping suggests the technique of downscaling sample entropy of the base fluid using carbon allotropes and thereby opening a novel method of improving the efficiency of thermal systems.
Keywords: carbon allotropic nanofluids, time series, entropy, MWCNT, thermal lens signal
Published in RUNG: 30.06.2022; Views: 1223; Downloads: 0
This document has many files! More...

14.
Soot effected sample entropy minimization in nanofluid for thermal system design : a thermal lens study
Mohanachandran Nair Sindhu Swapna, Vimal Raj, K. Satheesh Kumar, Sankaranarayana Iyer Sankararaman, 2020, original scientific article

Abstract: The present work suggests a method of improving the thermal system efficiency, through entropy minimisation, and unveils the mechanism involved by analysing the molecular/particle dynamics in soot nanofluids (SNFs) using the time series, power spectrum, and wavelet analyses of the thermal lens signal (TLS). The photothermal energy deposition in the SNF lowers the refractive index due to the temperature rise. It triggers the particle dynamics that are investigated by segmenting the TLS and analysing the refractive index, phase portrait, fractal dimension (D), Hurst exponent (H), and sample entropy (SampEn). The wavelet analysis gives information about the relation between the entropy and the frequency components. When the phase portrait analysis reflects the complex dynamics from region 1 to 2 for all the samples, the SampEn analysis supports it. The decreasing value of D (from 1.59 of the base fluid to 1.55 and 1.52) and the SampEn (from 1.11 of the base fluid to 0.385 and 0.699) with the incorporation of diesel and camphor soot, indicate its ability to lower the complexity, randomness, and entropy. The increase of SampEn with photothermal energy deposition suggests its relation to the thermodynamic entropy (S). The lowering of thermal diffusivity value of the base fluid from 1.4 × 10−7 m2/s to 1.1 × 10−7 and 0.5 × 10−7 m2 /s upon diesel and camphor soot incorporation suggests the heat-trapping and reduced molecular dynamics in heat dissipation.
Keywords: soot, entropy, thermal system, photothermal, time series, nanofluid, fractal
Published in RUNG: 30.06.2022; Views: 1146; Downloads: 0
This document has many files! More...

15.
Development of prototype of electronic speckle interferometry based spirometer
Mohanachandran Nair Sindhu Swapna, KUMAR ARUN, KUMAR SUNIL, SREEJYOTHI S, RAJ VIMAL, SANKARARAMAN SANKARANARAYANA IYER, 2021, original scientific article

Abstract: The paper reports the design, construction, and calibration of the prototype of a spirometer based on electronic speckle interferometry (ESPI). The conventional ESPI setup is modified by incorporating a DNM (Diaphragm-Nozzle-Mouthpiece) module comprising a metallic diaphragm, regulated airflow channel, and a mouthpiece. The exhaled air after a deep breathe is channelled to the DNM module where the diaphragm gets deformed. From the circular fringe pattern obtained by subtracting the speckled images before and after deformation of the metallic diaphragm, the radius of curvature (R) due to deformation is calculated using the principle of Newton’s rings. The value of R and peak expiratory flow rate (PEFR) from the standard spirometer reading are correlated. From the 640 observations spread over the range 100 - 500 L/min in the standard spirometer, an empirical relation is set in terms of R from the scatter plot. The ESPI spirometer (ESPIS) is validated by determining the value of R corresponding to a particular PEFR from the empirical relation and also from the standard spirometer. The PEFR calculated from ESPIS matches well with the standard spirometer reading, which suggests that the system designed and constructed can be used for biomedical applications for assessing lungs’ efficiency.
Keywords: Speckle, Spirometer, DNM module, ESPIS, Peak expiratory flow rate
Published in RUNG: 28.06.2022; Views: 1143; Downloads: 0
This document has many files! More...

16.
Dramatika na maturi 2008
2008, reviewed secondary and primary school textbook or other textbook

Keywords: matura 2008, nasilje, ženske, literarne študije
Published in RUNG: 25.04.2022; Views: 1450; Downloads: 0

17.
Molekularna karakterizacija lebdećih čestica slobodne troposfere sa Opservatorija Pico planine
Katja Džepina, Claudio Mazzoleni, Paulo Fialho, Swarup China, B. Zhang, R. Chris Owen, D. Helmig, J. Hueber, Sumit Kumar, J. A. Perlinger, 2017, published scientific conference contribution abstract

Abstract: Long-range transported free tropospheric aerosol was sampled at the PMO (38°28’15’’N, 28°24’14’’W; 2225 m amsl) on Pico Island of the Azores in the North Atlantic. Filter-collected aerosol during summer 2012 was analysed for organic and elemental carbon, and inorganic ions. The average aerosol ambient concentration was 0.9 µg m-3. Organic aerosol contributed the majority of mass (57%), followed by sulphate (21%) and nitrate (17%). Filter-collected aerosol was positively correlated with on-line aerosol measurements of black carbon, light scattering and number concentration. Water-soluble organic compounds (WSOC) from 9/24 and 9/25 samples collected during a pollution event were analysed with ultrahigh-resolution FT-ICR MS. FLEXPART analysis showed the air masses were very aged (>12 days). ~4000 molecular formulas were assigned to each of the mass spectra between m/z 100-1000. The majority of the assigned molecular formulas have unsaturated structures with CHO and CHNO elemental compositions. WSOC have an average O/C of ~0.45, relatively low compared to O/C of other aged aerosol, which might be the result of evaporation and fragmentation during long-range transport. The increase in aerosol loading during 9/24 was linked to biomass burning emissions from North America by FLEXPART and MODIS fire counts. This was confirmed with WSOC biomass burning markers and with the morphology and mixing state of particles as determined by SEM. The presence of markers characteristic of aqueous-phase reactions of biomass burning phenolic species suggests that the aerosol collected at Pico had undergone cloud processing. The air masses on 9/25 were more aged (~15 days) and influenced by marine emissions, as indicated by organosulphates and species characteristic for marine aerosol (e.g. fatty acids). The change in air masses for the two samples was corroborated by the changes in ozone, ethane, propane, morphology of particles, as well as by FLEXPART. In this presentation we will presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at the PMO.
Keywords: Atmospheric aerosol, Free troposphere, Mass spectrometry, Pico mountain observatory
Published in RUNG: 26.05.2021; Views: 2616; Downloads: 0
This document has many files! More...

18.
Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory : a case study with a long-range transported biomass burning plume
Katja Džepina, Claudio Mazzoleni, Paulo Fialho, Swarup China, Bo Zhang, R. Chris Owen, D. Helmig, J. Hueber, Sumit Kumar, J. A. Perlinger, 2015, original scientific article

Abstract: Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ∼ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 µg m−3 . On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51 %), followed by sulfate (23 ± 28 %), nitrate (13 ± 10 %), chloride (2 ± 3 %), and elemental carbon (2 ± 2 %). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O /C ratio of ∼ 0.45, which is relatively low compared to O /C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.
Keywords: organic aerosol, ultrahigh-resolution FT-ICR MS, electron microscopy, remote marine atmosphere, Pico Mountain Observatory
Published in RUNG: 11.04.2021; Views: 2288; Downloads: 0
This document has many files! More...

19.
Morphology and mixing state of aged soot particles at a remote marine free troposphere site : implications for optical properties
Swarup China, Barbara Scarnato, Robert C. Owen, Bo Zhang, MarianT. Ampadu, Sumit Kumar, Katja Džepina, Michael P. Dziobak, Paulo Fialho, Judith A. Perlinger, 2015, original scientific article

Abstract: The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. Here we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of <= 2.17. The top of the atmosphere direct radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. The forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds.
Keywords: atmospheric aerosol, soot, long-range transport, free troposphere, single scattering albedo
Published in RUNG: 11.04.2021; Views: 2065; Downloads: 0
This document has many files! More...

20.
Taming the topology of calix[4]arene-based 2D-covalent organic frameworks : interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes
Bikash Garai, Dinesh Shetty, Tina Škorjanc, Felipe Gándara, Nawavi Naleem, Sabu Varghese, Sudhir Kumar Sharma, Maria Baias, Ramesh Jagannathan, Mark Anthony Olson, 2021, original scientific article

Abstract: A bowl-shaped calix[4]arene with its exciting host–guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal–organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.
Keywords: dyes and pigments, covalent organic frameworks, adsorption, layers, chemical structure
Published in RUNG: 16.03.2021; Views: 2169; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top