Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


1 - 1 / 1
First pagePrevious page1Next pageLast page
1.
On the GeV Emission of the Type I BdHN GRB 130427A
Laura Beccera, She Sheng Xue, Yu Wang, Narek Sahakyan, Mile Karlica, Yen-Chen Chen, Simonetta Filippi, Christian Cherubini, Carlo Luciano Bianco, Jorge Armando Rueda, Rahim Moradi, Remo Ruffini, 2019, original scientific article

Abstract: We propose that the inner engine of a type I binary-driven hypernova (BdHN) is composed of Kerr black hole (BH) in a non-stationary state, embedded in a uniform magnetic field B_0 aligned with the BH rotation axis and surrounded by an ionized plasma of extremely low density of 10^−14 g cm−3. Using GRB 130427A as a prototype, we show that this inner engine acts in a sequence of elementary impulses. Electrons accelerate to ultrarelativistic energy near the BH horizon, propagating along the polar axis, θ = 0, where they can reach energies of ~10^18 eV, partially contributing to ultrahigh-energy cosmic rays. When propagating with $\theta \ne 0$ through the magnetic field B_0, they produce GeV and TeV radiation through synchroton emission. The mass of BH, M = 2.31M ⊙, its spin, α = 0.47, and the value of magnetic field B_0 = 3.48 × 10^10 G, are determined self consistently to fulfill the energetic and the transparency requirement. The repetition time of each elementary impulse of energy ${ \mathcal E }\sim {10}^{37}$ erg is ~10^−14 s at the beginning of the process, then slowly increases with time evolution. In principle, this "inner engine" can operate in a gamma-ray burst (GRB) for thousands of years. By scaling the BH mass and the magnetic field, the same inner engine can describe active galactic nuclei.
Found in: osebi
Keywords: black hole physics, binaries, gamma-ray burst, neutron stars, supernovae, Astrophysics - High Energy Astrophysical Phenomena
Published: 20.07.2020; Views: 912; Downloads: 0
.pdf Fulltext (1,09 MB)

Search done in 0 sec.
Back to top