1. Search for large-scale anisotropy on arrival directions of ultra-high-energy cosmic rays observed with the telescope array experimentR. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article Abstract: Motivated by the detection of a significant dipole structure in the arrival directions of ultra-high-energy cosmic rays above 8 EeV reported by the Pierre Auger Observatory (Auger), we search for a large-scale anisotropy using data collected with the surface detector array of the Telescope Array Experiment (TA). With 11 yr of TA data, a dipole structure in a projection of the R.A. is fitted with an amplitude of 3.3% ± 1.9% and a phase of 131° ± 33°. The corresponding 99% confidence-level upper limit on the amplitude is 7.3%. At the current level of statistics, the fitted result is compatible with both an isotropic distribution and the dipole structure reported by Auger. Keywords: cosmic rays, ultra-high-energy cosmic radiation, cosmic ray sources, cosmic ray showers, cosmic ray detectors, cosmic ray astronomy, extragalactic astronomy Published in RUNG: 05.02.2021; Views: 1867; Downloads: 0 This document has many files! More... |
2. Evidence for a supergalactic structure of magnetic deflection multiplets of ultra-high-energy cosmic raysR. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article Abstract: Evidence for a large-scale supergalactic cosmic-ray multiplet (arrival directions correlated with energy) structure is reported for ultra-high-energy cosmic-ray (UHECR) energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector and updated to 10 years. Previous energy–position correlation studies have made assumptions regarding magnetic field shapes and strength, and UHECR composition. Here the assumption tested is that, because the supergalactic plane is a fit to the average matter density of the local large-scale structure, UHECR sources and intervening extragalactic magnetic fields are correlated with this plane. This supergalactic deflection hypothesis is tested by the entire field-of-view (FOV) behavior of the strength of intermediate-scale energy–angle correlations. These multiplets are measured in spherical cap section bins (wedges) of the FOV to account for coherent and random magnetic fields. The structure found is consistent with supergalactic deflection, the previously published energy spectrum anisotropy results of the TA (the Hotspot and Coldspot), and toy-model simulations of a supergalactic magnetic sheet. The seven year data posttrial significance of this supergalactic structure of multiplets appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be 4.2σ. The 10 years of data posttrial significance is 4.1σ. Furthermore, the starburst galaxy M82 is shown to be a possible source of the TA Hotspot, and an estimate of the supergalactic magnetic field using UHECR measurements is presented. Keywords: extragalactic magnetic fields, ultra-high-energy cosmic radiation, cosmic rays, high energy astrophysics, astrophysical magnetism, cosmic ray astronomy, cosmic ray sources Published in RUNG: 05.02.2021; Views: 1959; Downloads: 124
Link to full text This document has many files! More... |
3. Measurement of the proton-air cross section with Telescope Array's Black Rock Mesa and Long Ridge fluorescence detectors, and surface array in hybrid modeR. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article Abstract: Ultra high energy cosmic rays provide the highest known energy source in the universe to measure proton cross sections. Though conditions for collecting such data are less controlled than an
accelerator environment, current generation cosmic ray observatories have large enough exposures to collect significant statistics for a reliable measurement for energies above what can be attained in the lab. Cosmic ray measurements of cross section use atmospheric calorimetry to measure depth of air shower maximum (Xmax), which is related to the primary particle’s energy and mass. The tail of the Xmax distribution is assumed to be dominated by showers generated by protons, allowing measurement of the inelastic proton-air cross section. In this work the proton-air inelastic
cross section measurement, σ_inel_p−air, using data observed by Telescope Array’s Black Rock Mesa and Long Ridge fluorescence detectors and surface detector array in hybrid mode is presented. σ_inel_p−air is observed to be 520.1 ± 35.8 [Stat.] +25.0 −40 [Sys.] mb at √s = 73 TeV. The total proton-proton cross section is subsequently inferred from Glauber formalism and is found to be σ_tot_pp = 139.4 +23.4−21.3[Stat.] +15.0−24.0[Sys.] mb. Keywords: cosmic rays, astroparticles, proton-air cross section Published in RUNG: 04.02.2021; Views: 1888; Downloads: 0 This document has many files! More... |
4. Observations of the origin of downward terrestrial gamma-ray flashesJ. W. Belz, P. R. Krehbiel, J. Remington, M. A. Stanley, R. U. Abbasi, R. LeVon, W. Rison, D. Rodeheffer, T. Abu-Zayyad, Jon Paul Lundquist, 2020, original scientific article Abstract: In this paper we report the first close, high‐resolution observations of downward‐directed terrestrial gamma‐ray flashes (TGFs) detected by the large‐area Telescope Array cosmic ray observatory, obtained in conjunction with broadband VHF interferometer and fast electric field change measurements of the parent discharge. The results show that the TGFs occur during strong initial breakdown pulses (IBPs) in the first few milliseconds of negative cloud‐to‐ground and low‐altitude intracloud flashes and that the IBPs are produced by a newly identified streamer‐based discharge process called fast negative breakdown. The observations indicate the relativistic runaway electron avalanches (RREAs) responsible for producing the TGFs are initiated by embedded spark‐like transient conducting events (TCEs) within the fast streamer system and potentially also by individual fast streamers themselves. The TCEs are inferred to be the cause of impulsive sub‐pulses that are characteristic features of classic IBP sferics. Additional development of the avalanches would be facilitated by the enhanced electric field ahead of the advancing front of the fast negative breakdown. In addition to showing the nature of IBPs and their enigmatic sub‐pulses, the observations also provide a possible explanation for the unsolved question of how the streamer to leader transition occurs during the initial negative breakdown, namely, as a result of strong currents flowing in the final stage of successive IBPs, extending backward through both the IBP itself and the negative streamer breakdown preceding the IBP. Keywords: terrestrial gamma-ray flashes, lightning, fast breakdown, initial breakdown pulse, atmospheric electricity, transient conducting events Published in RUNG: 04.02.2021; Views: 1976; Downloads: 20
Link to full text This document has many files! More... |
5. CORSIKA Simulation of the Telescope Array Surface DetectorT. Abu-Zayyad, J. P. Lundquist, 2014, original scientific article Abstract: The Telescope Array is the largest experiment studying ultra-high energy cosmic rays in the northern hemisphere. The detection area of the experiment consists of an array of 507 surface detectors, and a fluorescence detector divided into three sites at the periphery. The viewing directions of the 38 fluorescence telescopes point over the air space above the surface array. In this paper, we describe a technique that we have developed for simulating the response of the array of surface detectors of the Telescope Array experiment. The two primary components of this method are (a) the generation of a detailed CORSIKA Monte Carlo simulation with all known characteristics of the data, and (b) the validation of the simulation by a direct comparison with the Telescope Array surface detector data. This technique allows us to make a very accurate calculation of the acceptance of the array. We also describe a study of systematic uncertainties in this acceptance calculation. Keywords: cosmic ray, extensive air shower, simulation, surface detector Published in RUNG: 19.05.2020; Views: 2079; Downloads: 0 This document has many files! More... |
6. Search for anisotropy of ultrahigh energy cosmic rays with the Telescope Array experimentT. Abu-Zayyad, J. P. Lundquist, 2012, original scientific article Abstract: We study the anisotropy of Ultra-High Energy Cosmic Ray (UHECR) events collected by the Telescope Array (TA) detector in the first 40 months of operation. Following earlier studies, we examine event sets with energy thresholds of 10 EeV, 40 EeV, and 57 EeV. We find that the distributions of the events in right ascension and declination are compatible with an isotropic distribution in all three sets. We then compare with previously reported clustering of the UHECR events at small angular scales. No significant clustering is found in the TA data. We then check the events with E > 57 EeV for correlations with nearby active galactic nuclei. No significant correlation is found. Finally, we examine all three sets for correlations with the large-scale structure (LSS) of the universe. We find that the two higher-energy sets are compatible with both an isotropic distribution and the hypothesis that UHECR sources follow the matter distribution of the universe (the LSS hypothesis), while the event set with E > 10 EeV is compatible with isotropy and is not compatible with the LSS hypothesis at 95% CL unless large deflection angles are also assumed. We show that accounting for UHECR deflections in a realistic model of the Galactic magnetic field can make this set compatible with the LSS hypothesis. Keywords: acceleration of particles, astroparticle physics, cosmic rays, magnetic fields, methods: statistical, relativistic processes Published in RUNG: 19.05.2020; Views: 2420; Downloads: 0 This document has many files! More... |
7. The surface detector array of the Telescope Array experimentT. Abu-Zayyad, J. P. Lundquist, 2012, original scientific article Abstract: The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector. Keywords: Ultra-high energy cosmic rays, Telescope Array experiment, Extensive air shower array Published in RUNG: 19.05.2020; Views: 2233; Downloads: 0 This document has many files! More... |
8. The energy spectrum of ultra-high-energy cosmic rays measured by the Telescope Array FADC fluorescence detectors in monocular modeT. Abu-Zayyad, J. P. Lundquist, 2013, original scientific article Abstract: We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array’s third fluorescence detector [T. Abu-Zayyad et al., The energy spectrum of Telescope Array’s middle drum detector and the direct comparison to the high resolution fly’s eye experiment, Astroparticle Physics 39 (2012) 109-119, http://dx.doi.org/10.1016/j.astropartphys.2012.05.012, Available from: ]. This combined spectrum corroborates the recently published Telescope Array surface detector spectrum [T. Abu-Zayyad, et al., The cosmic-ray energy spectrum observed with the surface detector of the Telescope Array experiment, ApJ 768 (2013) L1, http://dx.doi.org/10.1088/2041-8205/768/1/L1, Available from: ] with independent systematic uncertainties. Keywords: UHECR, Energy spectrum, Fluorescence, Monocular Published in RUNG: 19.05.2020; Views: 2109; Downloads: 0 This document has many files! More... |
9. Correlations of the arrival directions of ultra-high energy cosmic ray with extragalactic objects as observed by the telescope array experimentT. Abu-Zayyad, J. P. Lundquist, 2013, original scientific article Abstract: We search for correlations between the positions of extragalactic objects and the arrival directions of ultra-high energy cosmic rays (UHECRs) with primary energy E ≥ 40 EeV as observed by the surface detector array of the Telescope Array (TA) experiment during the first 40 months of operation. We examine several public astronomical object catalogs, including the Veron-Cetty and Veron catalog of active galactic nuclei. We count the number of TA events correlated with objects in each catalog as a function of three parameters: the maximum angular separation between a TA event and an object, the minimum energy of the events, and the maximum redshift of the objects. We determine the combination of these parameters that maximizes the correlations, and we calculate the probability of having the same levels of correlations from an isotropic distribution of UHECR arrival directions. No statistically significant correlations are found when penalties for scanning over the above parameters and for searching in several catalogs are taken into account. Keywords: acceleration of particles, astroparticle physics, cosmic rays Published in RUNG: 19.05.2020; Views: 2417; Downloads: 120
Full text (779,07 KB) |
10. |