1. Non-oxidative calcination enhances the methane dry reforming performance of ▫$Ni/CeO_{2−x}$▫ catalysts under thermal and photo-thermal conditionsKristijan Lorber, Vasyl Shvalya, Janez Zavašnik, Damjan Vengust, Iztok Arčon, Matej Huš, Andraž Pavlišič, Janvit Teržan, Uroš Cvelbar, Blaž Likozar, Petar Djinović, 2024, original scientific article Abstract: We analyzed the effect of the calcination atmosphere and visible-light contribution to an accelerated
reaction rate and improved H2 selectivity over 2 wt% Ni/CeO2−x nanorod catalysts. Spectroscopic and
structural characterization was performed by operando DRIFTS, in situ Raman, UV-vis and XAS
techniques, which were complemented by DFT calculations. Calcination in an argon or H2 atmosphere
yields 15% more active catalysts in the thermally driven reaction, which are also more susceptible to
light-induced rate acceleration compared to the catalyst calcined in air. The most active 2Ni/CeO2
catalyst calcined in hydrogen converts methane with a rate of 7.5 mmol (gcat min)−1 and produces a H2/
CO ratio of 0.6 at 460 °C when stimulated by a combination of visible light and thermal energy. In the
absence of visible light illumination and at an identical catalyst temperature, the achieved methane rate
was 4.2 mmol (gcat min)−1 and the H2/CO ratio was 0.49. The non-oxidative calcination improves nickel
dispersion and the formation of subnanometer sized Ni clusters, together with a higher abundance of
surface and bulk oxygen vacancies in ceria nanorods. The Ni–Ov–Ce3+components constitute the
catalytically active sites under visible light illumination, which enable the DRM reaction to proceed with
an Ea value of 20 kJ mol−1. Visible light also induces the following changes in the 2Ni/CeO2−x catalyst
during the DRM reaction: (1) decomposition and desorption of carbonates from the nickel–ceria
interface sites, (2) reduced population of nickel surface with carbonyl species and (3) promoted
adsorption and dissociation of methane. Keywords: methane dry reforming performance, calcination Published in RUNG: 05.07.2024; Views: 1243; Downloads: 18
Full text (4,24 MB) This document has many files! More... |