Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 2 / 2
First pagePrevious page1Next pageLast page
1.
Search for a signal from dark matter sub-halos with the galactic plane survey of CTA Observatory : master's thesis
Zoja Rokavec, 2024, master's thesis

Abstract: Dark matter (DM), known to be a dominant matter component in the Universe, has been searched for extensively, yet remains undetected. One of the promising avenues of detecting a DM signal is to observe the so called ’DM sub-halos’ within our galaxy. These sub-halos, which are numerous within the Milky Way, are formed by the clustering of DM, as predicted by cosmological simulations, and most of them lack baryonic matter counterparts, making them challenging to detect. How- ever, the annihilation or decay of Weakly Interacting Massive Particles (WIMPs), a leading candidate for DM, within these sub-halos is expected to produce very high-energy (VHE) photons (called gamma-rays) at TeV energies, offering possible indirect DM detection. In this thesis, we focus on the Galactic Plane Survey (GPS) of the Cherenkov Tele- scope Array Observatory (CTAO), an upcoming ground-based gamma-ray obser- vatory, which promises unprecedented sensitivity and resolution in the detection of cosmic gamma-ray sources in the ∼ 30 GeV to ∼ 100 TeV energy range. As dark sub-halos are expected to appear as unidentified (point) sources in the CTAO GPS data, we employ a machine learning (ML)-based approach, the AutoSour- ceID framework, leveraging U-shaped networks (U-Nets) and Laplacian of Gaus- sian (LoG) filter, for automatic source detection and localization, and apply it to simulated GPS data. We establish detection thresholds for U-Nets trained on dif- ferently scaled counts (counts, square root or log of counts) and identify which approach offers best results (in terms of flux sensitivity and location accuracy). Our findings suggest that using log-scaled counts yields a factor of 1.7 lower flux threshold compared to counts alone. In addition, we compare our ML outcomes with traditional methods; however, this comparison is not straightforward, as ML and traditional approaches fundamentally differ in their methodologies and un- derlying assumptions. Nevertheless, The flux threshold obtained using log-scaled counts is comparable to that of the traditional likelihood-based detection method implemented in the Gammapy library, although further study is needed to estab- lish a more definitive comparison. These preliminary results also suggest that the flux threshold for detecting 90% of true sources with the ML approach is approx- imately two times lower than the sensitivity reported for the GPS in the CTAO publication. Although these results are not directly comparable due to differences in methodology, they hint that ML methods may offer superior performance in certain scenarios. Furthermore, we discuss the implications of our results on the sensitivity to DM sub-halos, improving it by a factor of 4, highlighting the possi- bility of detecting at least one sub-halo with a cross section approximately ⟨σv⟩ = 2.4 × 10−23 cm3 /s.
Keywords: Cherenkov Telescope Array Observatory, dark matter, sub-halos, machine learning, gamma-rays, master's thesis
Published in RUNG: 06.09.2024; Views: 623; Downloads: 12
.pdf Full text (5,39 MB)

2.
Studies of cosmic rays in our Galaxy with Cherenkov Telescope Array : diploma seminar
Zoja Rokavec, 2022, research project (high school)

Keywords: cosmic rays, cosmic PeVatrons, Cherenkov Telescope Array, very-high-energy gamma-rays
Published in RUNG: 15.06.2022; Views: 2138; Downloads: 0
This document has many files! More...

Search done in 0.01 sec.
Back to top