1. Measurement of the mass composition of ultra-high-energy cosmic rays at the Pierre Auger ObservatoryEric Mayotte, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution Abstract: After nearly 20 years of data-taking, the measurements made with the Pierre Auger Observatory represent the largest collection of ultra-high-energy cosmic ray (UHECR) data so far assembled from a single instrument. Exploring this data set led to a deeper understanding of the UHECR flux and many surprises. In particular, studies aiming to investigate and leverage the mass composition of UHECRs have played an important role in empowering discovery. This contribution will present an overview of the analyses of primary mass composition carried out during the first phase of the Observatory. The overview includes analyses derived from measurements made by the surface,
fluorescence, and radio detectors covering energies ranging from 0.1 EeV up to 100 EeV. Special attention will be given to recent advances and results to provide a complete picture of UHECR mass composition at the Observatory as it moves to its next phase, AugerPrime. Additionally, specific updates will be given to studies focusing on mass trends from surface detector rise-times, �max dependent anisotropies, and UHECR beam characterization using the correlation between �max and signal amplitudes at the ground. Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector Published in RUNG: 23.01.2024; Views: 1730; Downloads: 5
Full text (1,03 MB) This document has many files! More... |
2. Measuring the muon content of inclined air showers using AERA and the water-Cherenkov detector array of the Pierre Auger ObservatoryMarvin Gottowik, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution Abstract: In this proceeding, we present a proof of principle study for estimating the number of muons of inclined air showers proportional to their energy using hybrid radio and particle detection. We use the radiation energy of an air shower to estimate its electromagnetic energy and measure the muon number independently with the water-Cherenkov detector array (WCD) of the Pierre Auger Observatory. We select 32 high-quality events in almost six years of data with electromagnetic energies above 4 EeV to ensure full efficiency for the WCD reconstruction. The muon content in data is found to be compatible with the one for an iron primary as predicted by current-generation hadronic interaction models. This can be interpreted as a deficit of muons in simulations as a lighter mass composition is expected from �max measurements. Such a muon deficit was already
observed in previous analyses of the Auger collaboration and is now confirmed for the first time with radio data. Currently, this analysis is limited by low statistics due to the small area of AERA of 17 km^2 and the high energy threshold. We will outline the advantages of using radio detection instead of the Auger Fluorescence Detector in future analyses allowing for high-statistic measurements of the muon content as a function of energy. Keywords: ultra-high energy cosmic rays, Pierre Auger Observatory, AERA, water-Cherenkov detector Published in RUNG: 23.01.2024; Views: 2277; Downloads: 7
Full text (1,49 MB) This document has many files! More... |
3. A Large Radio Detector at the Pierre Auger Observatory – Measuring the Properties of Cosmic Rays up to the Highest EnergiesBjarni Pont, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECRs), Pierre Auger Observatory, UHECR Radio Detection, Auger Engineering Radio Array (AERA), AugerPrime Upgrade Radio Detectors Published in RUNG: 24.07.2020; Views: 3983; Downloads: 78
Full text (1,94 MB) |
4. Recent Results of the Auger Engineering Radio Array (AERA)Ewa M. Holt, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2017, published scientific conference contribution Keywords: Auger Engineering Radio Array (AERA), Pierre Auger Observatory, extensive air showers Published in RUNG: 16.02.2018; Views: 4737; Downloads: 147
Full text (636,40 KB) |
5. Status and Prospects of the Auger Engineering Radio ArrayJohannes Schulz, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Auger Engineering Radio Array (AERA) is an extension of the
Pierre Auger Observatory. It is used to detect radio emission
from extensive air showers in the 30 - 80 MHz frequency band.
A focus of interest is the dependence of the radio emission on
shower parameters such as the energy and the atmospheric depth
of the shower maximum. After three phases of deployment, AERA
now consists of 153 autonomous radio stations with different
spacings, covering an area of about 17 km2. The size, station
spacings, and geographic location at the same site or near other
Auger extensions, are all targeted at cosmic ray energies above
10[sup]17 eV. The array allows us to explore different
technical schemes to measure the radio emission as well as to
cross calibrate our measurements with the established baseline
detectors of the Auger Observatory. We present the most recent
technological developments and selected experimental results
obtained with AERA. Keywords: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), radio emission from extensive air showers, detector cross-calibration Published in RUNG: 03.03.2016; Views: 6329; Downloads: 202
Full text (2,79 MB) |
6. The Energy Content of Extensive Air Showers in the Radio Frequency Range of 30-80 MHzChristian Glaser, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: At the Auger Engineering Radio Array (AERA) of the Pierre Auger
Observatory, we have developed a new method to measure the
total amount of energy that is transferred from the primary
cosmic ray into radio emission. We find that this radiation
energy is an estimator of the cosmic ray energy. It scales
quadratically with the cosmic ray energy, as expected for
coherent emission. We measure 15.8 MeV of radiation energy for
a 1 EeV air shower arriving perpendicular to the geomagnetic
field at the Auger site, in the frequency band of the detector
from 30 to 80 MHz. These observations are compared to the data
of the surface detector of the Observatory, which provide
well-calibrated energies and arrival directions of the cosmic
rays. We find energy resolutions of the radio reconstruction
of 22% for the complete data set, and 17% for a high-quality
subset containing only events with at least five stations with
signal. Keywords: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), extensive air showers, radio reconstruction: energy resolution Published in RUNG: 03.03.2016; Views: 5987; Downloads: 214
Full text (574,66 KB) |
7. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showersA. Aab, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, original scientific article Keywords: kozmični žarki ekstremnih energij, AERA, GPS, metoda svetilnik Published in RUNG: 15.02.2016; Views: 6828; Downloads: 0 This document has many files! More... |