Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
The Cherenkov Telescope Array: layout, design and performance
Orel Gueta, Saptashwa BHATTACHARYYA, Barbara MARČUN, Judit PÉREZ ROMERO, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Gabrijela ZAHARIJAS, Marko Zavrtanik, Danilo Zavrtanik, Miha ŽIVEC, 2021, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) will be the next generation very-high-energy gamma-ray observatory. CTA is expected to provide substantial improvement in accuracy and sensitivity with respect to existing instruments thanks to a tenfold increase in the number of telescopes and their state-of-the-art design. Detailed Monte Carlo simulations are used to further optimise the number of telescopes and the array layout, and to estimate the observatory performance using updated models of the selected telescope designs. These studies are presented in this contribution for the two CTA stations located on the island of La Palma (Spain) and near Paranal (Chile) and for di˙erent operation and observation conditions.
Keywords: Cherenkov Telescope Array, very-high-energy gamma-ray observatory
Published in RUNG: 19.09.2023; Views: 63; Downloads: 0
URL Link to file
This document has many files! More...

2.
Monte Carlo Simulations and Validation of NectarCAM, a Medium Sized Telescope Camera for CTA
Thomas P. Armstrong, Saptashwa BHATTACHARYYA, Barbara MARČUN, Judit PÉREZ ROMERO, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Gabrijela ZAHARIJAS, Marko Zavrtanik, Danilo Zavrtanik, Miha ŽIVEC, 2021, published scientific conference contribution

Abstract: The upcoming Cherenkov Telescope Array (CTA) ground-based gamma-ray observatory will open up our view of the very high energy Universe, o˙ering an improvement in sensitivity of 5-10 times that of previous experiments. NectarCAM is one of the proposed cameras for the Medium-Sized Telescopes (MST) which have been designed to cover the core energy range of CTA, from 100 GeV to 10 TeV. The final camera will be capable of GHz sampling and provide a field of view of 8 degrees with its 265 modules of 7 photomultiplier each (for a total of 1855 pixels). In order to validate the performance of NectarCAM, a partially-equipped prototype has been constructed consisting of only the inner 61-modules. It has so far undergone testing at the integration test-bench facility in CEA Paris-Saclay (France) and on a prototype of the MST structure in Adlershof (Germany). To characterize the performance of the prototype, Monte Carlo simulations were conducted using a detailed model of the 61 module camera in the CORSIKA/sim_telarray framework. This contribution provides an overview of this work including the comparison of trigger and readout performance on test-bench data and trigger and image parameterization performance during on-sky measurements.
Keywords: Cherenkov Telescope Array, ground-based gamma-ray observatory, NectarCAM, Medium-Sized Telescopes
Published in RUNG: 18.09.2023; Views: 52; Downloads: 2
URL Link to file
This document has many files! More...

3.
Prototype Open Event Reconstruction Pipeline for the Cherenkov Telescope Array
Maximilian Nöthe, Saptashwa BHATTACHARYYA, Barbara MARČUN, Judit PÉREZ ROMERO, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Gabrijela ZAHARIJAS, Marko Zavrtanik, Danilo Zavrtanik, Miha ŽIVEC, 2021, published scientific conference contribution

Abstract: The Cherenkov Telescope Array (CTA) is the next-generation gamma-ray observatory currently under construction. It will improve over the current generation of imaging atmospheric Cherenkov telescopes (IACTs) by a factor of five to ten in sensitivity and it will be able to observe the whole sky from a combination of two sites: a northern site in La Palma, Spain, and a southern one in Paranal, Chile. CTA will also be the first open gamma-ray observatory. Accordingly, the data analysis pipeline is developed as open-source software. The event reconstruction pipeline accepts raw data of the telescopes and processes it to produce suitable input for the higher-level science tools. Its primary tasks include reconstructing the physical properties of each recorded shower and providing the corresponding instrument response functions. ctapipe is a framework providing algorithms and tools to facilitate raw data calibration, image extraction, image parameterization and event reconstruction. Its main focus is currently the analysis of simulated data but it has also been successfully applied for the analysis of data obtained with the first CTA prototype telescopes, such as the Large-Sized Telescope 1 (LST-1). pyirf is a library to calculate IACT instrument response functions, needed to obtain physics results like spectra and light curves, from the reconstructed event lists. Building on these two, protopipe is a prototype for the event reconstruction pipeline for CTA. Recent developments in these software packages will be presented.
Keywords: Cherenkov Telescope Array, gamma-ray observatory, vent reconstruction pipeline, Large-Sized Telescope 1
Published in RUNG: 18.09.2023; Views: 45; Downloads: 2
URL Link to file
This document has many files! More...

4.
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A. Acharyya, Saptashwa BHATTACHARYYA, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Gabrijela ZAHARIJAS, Danilo Zavrtanik, Marko Zavrtanik, Miha ŽIVEC, 2023, original scientific article

Abstract: A deep survey of the Large Magellanic Cloud at ∼ 0.1−100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3−2.4 pending a flux increase by a factor > 3−4 over ∼ 2015−2035. Large-scale interstellar emission remains mostly out of reach of the survey if its > 10 GeV spectrum has a soft photon index ∼ 2.7, but degree-scale 0.1 − 10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1 − 10% of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within < 100 pc. Finally, the survey could probe the canonical velocity-averaged cross section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
Keywords: very-high energy (VHE) gamma-rays, Cherenkov Telescope Array (CTA) Observatory, Large Magellanic Cloud, pulsar wind nebulas, star-forming regions, cosmic rays, dark matter
Published in RUNG: 02.06.2023; Views: 378; Downloads: 0
This document has many files! More...

5.
6.
7.
Search done in 0.04 sec.
Back to top