Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 302
First pagePrevious page12345678910Next pageLast page
1.
An extremely energetic cosmic ray observed by a surface detector array
R. U. Abbasi, M. Allen, R. Arimura, J. W. Belz, Douglas R. Bergman, S. A. Blake, K. Shin, I. J. Buckland, B. G. Cheon, Jon Paul Lundquist, 2023, original scientific article

Abstract: Cosmic rays are energetic charged particles from extraterrestrial sources, with the highest-energy events thought to come from extragalactic sources. Their arrival is infrequent, so detection requires instruments with large collecting areas. In this work, we report the detection of an extremely energetic particle recorded by the surface detector array of the Telescope Array experiment. We calculate the particle’s energy as 244 +- 29 (stat.) +51,-76 (syst.) exa–electron volts (~40 joules). Its arrival direction points back to a void in the large-scale structure of the Universe. Possible explanations include a large deflection by the foreground magnetic field, an unidentified source in the local extragalactic neighborhood, or an incomplete knowledge of particle physics.
Keywords: ultra-high-energy cosmic rays, telescope array, extremely energetic cosmic-ray event
Published in RUNG: 23.04.2025; Views: 154; Downloads: 0
URL Link to file
This document has many files! More...

2.
Mass composition of ultrahigh energy cosmic rays from distribution of their arrival directions with the Telescope Array
R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Y. Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, Jon Paul Lundquist, 2024, original scientific article

Abstract: We use a new method to estimate the injected mass composition of ultrahigh cosmic rays (UHECRs) at energies higher than 10 EeV. The method is based on comparison of the energy-dependent distribution of cosmic ray arrival directions as measured by the Telescope Array (TA) experiment with that calculated in a given putative model of UHECR under the assumption that sources trace the large-scale structure (LSS) of the Universe. As we report in the companion Letter, the TA data show large deflections with respect to the LSS which can be explained, assuming small extragalactic magnetic fields (EGMF), by an intermediate composition changing to a heavy one (iron) in the highest energy bin. Here we show that these results are robust to uncertainties in UHECR injection spectra, the energy scale of the experiment and galactic magnetic fields. The assumption of weak EGMF, however, strongly affects this interpretation at all but the highest energies E > 100 EeV, where the remarkable isotropy of the data implies a heavy injected composition even in the case of strong EGMF. This result also holds if UHECR sources are as rare as 2 × 10[sup]−5 Mpc[sup]−3, that is the conservative lower limit for the source number density.
Keywords: ultrahigh energy cosmic rays, large-scale structure, extragalactic magnetic fields, UHECR propagation, Telescope Array, UHECR mass composition, UHECR arrival directions
Published in RUNG: 23.04.2025; Views: 126; Downloads: 0
URL Link to file
This document has many files! More...

3.
Isotropy of Cosmic Rays beyond 10[sup]20 eV Favors Their Heavy Mass Composition
R. U. Abbasi, Jon Paul Lundquist, 2024, original scientific article

Abstract: We report an estimation of the injected mass composition of ultrahigh energy cosmic rays (UHECRs) at energies higher than 10 EeV. The composition is inferred from an energy-dependent sky distribution of UHECR events observed by the Telescope Array surface detector by comparing it to the Large Scale Structure of the local Universe. In the case of negligible extragalactic magnetic fields (EGMFs), the results are consistent with a relatively heavy injected composition at E ∼ 10 EeV that becomes lighter up to E ∼ 100 EeV, while the composition at E > 100 EeV is very heavy. The latter is true even in the presence of highest experimentally allowed extragalactic magnetic fields, while the composition at lower energies can be light if a strong EGMF is present. The effect of the uncertainty in the galactic magnetic field on these results is subdominant.
Keywords: ultrahigh energy cosmic rays (UHECRs), Large Scale Structure, extragalactic magnetic fields, UHECR propagation, Telescope Array surface detector, UHECR mass composition, UHECR arrival directions
Published in RUNG: 23.04.2025; Views: 129; Downloads: 0
URL Link to file
This document has many files! More...

4.
Intermediate fluence downward terrestrial gamma ray flashes as observed by the Telescope Array Surface Detector
R. U. Abbasi, N. Kieu, P. R. Krehbiel, J. W. Belz, M. M. F. Saba, W. Rison, M. A. Stanley, D. Rodeheffer, D. Mazzucco, Jon Paul Lundquist, 2024, original scientific article

Abstract: On 11 September 2021, two small thunderstorms developed over the Telescope Array Surface Detector (TASD) that produced an unprecedented number of six downward terrestrial gamma ray flashes (TGFs) within one‐hour timeframe. The TGFs occurred during the initial stage of negative cloud‐to‐ground flashes whose return strokes had increasingly large peak currents up to 223 kA, 147 GeV energy deposit in up to 25 1.2 km‐spaced surface detectors, and intermittent bursts of gamma‐rays with total durations up to 717 s. The analyses are based on observations recorded by the TASD network, complemented by data from a 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, and the National Lightning Detection Network. The TGFs of the final two flashes had gamma fluences of and 8, logarithmically bridging the gap between previous TASD and satellite‐based detections. The observations further emphasize the similarity between upward and downward TGF varieties, suggesting a common mechanism for their production.
Keywords: Telescope Array Surface Detector, terrestrial gamma ray flashes, 3D lightning mapping array, broadband VHF interferometer, fast electric field change sensor, high‐speed video camera, National Lightning Detection Network, TGF fluence measurement
Published in RUNG: 23.04.2025; Views: 154; Downloads: 0
.pdf Full text (5,03 MB)
This document has many files! More...

5.
First time-resolved leader spectra associated with a downward terrestrial gamma-ray flash detected at the Telescope Array Surface Detector
N. Kieu, R. U. Abbasi, M. M. F. Saba, J. W. Belz, P. R. Krehbiel, M. A. Stanley, F. J. Gordillo-Vazquez, M. Passas-Varo, T. Warner, Jon Paul Lundquist, 2024, original scientific article

Abstract: Optical emissions associated with Terrestrial Gamma ray Flashes (TGFs) have recently become important subjects in space‐based and ground‐based observations as they can help us understand how TGFs are produced during thunderstorms. In this paper, we present the first time‐resolved leader spectra of the optical component associated with a downward TGF. The TGF was observed by the Telescope Array Surface Detector (TASD) simultaneously with other lightning detectors, including a Lightning Mapping Array (LMA), an INTerFerometer (INTF), a Fast Antenna (FA), and a spectroscopic system. The spectroscopic system recorded leader spectra at 29,900 frames per second (33.44 s time resolution), covering a spectral range from 400 to 900 nm, with 2.1 nm per pixel. The recordings of the leader spectra began 11.7 ms before the kA return stroke and at a height of 2.37 km above the ground. These spectra reveal that optical emissions of singly ionized nitrogen and oxygen occur between 167 s before and 267 s after the TGF detection, while optical emissions of neutrals (H I, 656 nm; N I, 744 nm, and O I, 777 nm) occur right at the moment of the detection. The time‐dependent spectra reveal differences in the optical emissions of lightning leaders with and without downward TGFs.
Keywords: Telescope Array Surface Detector, terrestrial gamma‐ray flashes, time‐resolved tgf leader spectra
Published in RUNG: 22.04.2025; Views: 156; Downloads: 0
.pdf Full text (2,56 MB)
This document has many files! More...

6.
Prospects for annihilating dark matter from M31 and M33 observations with the Cherenkov Telescope Array
Miltiadis Michailidis, Lorenzo Marafatto, Denys Malyshev, Fabio Iocco, Gabrijela Zaharijas, Olga Sergijenko, Maria Isabel Bernardos, Christopher Eckner, Alexey Boyarsky, Anastasia Sokolenko, Andrea Santangelo, 2023, original scientific article

Abstract: Abstract M31 and M33 are the closest spiral galaxies and the largest members (together with the Milky Way) of the Local group, which makes them interesting targets for indirect dark matter searches. In this paper we present studies of the expected sensitivity of the Cherenkov Telescope Array (CTA) to an annihilation signal from weakly interacting massive particles from M31 and M33. We show that a 100 h long observation campaign will allow CTA to probe annihilation cross-sections up to 〈συ〉 ≈ 5·10-25 cm3 s-1 for the τ + τ - annihilation channel (for M31, at a DM mass of 0.3 TeV), improving the current limits derived by HAWC by up to an order of magnitude. We present an estimate of the expected CTA sensitivity, by also taking into account the contributions of the astrophysical background and other possible sources of systematic uncertainty. We also show that CTA might be able to detect the extended emission from the bulge of M31, detected at lower energies by the Fermi/LAT.
Keywords: dark matter, gamma rays, Cherenkov Telescope Array, i
Published in RUNG: 13.01.2025; Views: 593; Downloads: 10
URL Link to file
This document has many files! More...

7.
Multi-messenger and transient astrophysics with the Cherenkov Telescope Array
Ž. Bošnjak, Anthony M. Brown, Alessandro Carosi, M. Chernyakova, Pierre Cristofari, F. Longo, A. López Oramas, M. Santander, Serguei Vorobiov, Danilo Zavrtanik, 2021, other component parts

Abstract: The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators.
Keywords: multi-messenger astrophysics, gravitational waves, very-high-energy (VHE) gamma rays, cosmic rays, VHE neutrinos, transient astrophysical phenomena, Cherenkov Telescope Array Observatory
Published in RUNG: 13.01.2025; Views: 623; Downloads: 7
.pdf Full text (6,21 MB)
This document has many files! More...

8.
Probing extreme environments with the Cherenkov Telescope Array
C. Boisson, Anthony M. Brown, A. Burtovoi, M. Cerruti, M. Chernyakova, T. Hassan, J.-P. Lenain, Marina Manganaro, Serguei Vorobiov, Danilo Zavrtanik, 2021, other component parts

Abstract: The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and extreme environments are also the most likely sources of multi-messenger emission. The most energetic part of the electromagnetic spectrum corresponds to the very-high-energy (VHE, E>100 GeV) gamma-ray regime, which can be extensively studied with ground based Imaging Atmospheric Cherenkov Telescopes (IACTs). The results obtained by the current generation of IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance of the VHE band in understanding the non-thermal emission of extreme environments in our Universe. In some objects, the energy output in gamma rays can even outshine the rest of the broadband spectrum. The Cherenkov Telescope Array (CTA) is the next generation of IACTs, which, with cutting edge technology and a strategic configuration of ~100 telescopes distributed in two observing sites, in the northern and southern hemispheres, will reach better sensitivity, angular and energy resolution, and broader energy coverage than currently operational IACTs. With CTA we can probe the most extreme environments and considerably boost our knowledge of the non-thermal Universe.
Keywords: black holes, relativistic jets, neutron stars, supernovae, clusters of galaxies, particle acceleration mechanisms, very-high-energy gamma rays, Cherenkov Telescope Array Observatory
Published in RUNG: 10.01.2025; Views: 611; Downloads: 4
Full text (7,40 MB)
This document has many files! More...

9.
Origin and role of relativistic cosmic particles
A. Araudo, G. Morlino, B. Olmi, Fabio Acero, I. Agudo, Rémi Adam, Rafael Alves Batista, E. Amato, E. O. Angüner, Serguei Vorobiov, 2021, other component parts

Abstract: This white paper briefly summarizes the importance of the study of relativistic cosmic rays, both as a constituent of our Universe, and through their impact on stellar and galactic evolution. The focus is on what can be learned over the coming decade through ground-based gamma-ray observations over the 20 GeV to 300 TeV range. Submitted as input to ASTRONET Science Vision and Infrastructure roadmap on behalf of the CTA consortium.
Keywords: High Energy Astrophysical Phenomena, cosmic rays, supernova remnants, Cherenkov Telescope Array Observatory
Published in RUNG: 09.01.2025; Views: 657; Downloads: 8
.pdf Full text (7,45 MB)
This document has many files! More...

10.
Probing dark matter and fundamental physics with the Cherenkov Telescope Array
Fabio Iocco, Manuel Meyer, M. Doro, Werner Hofmann, Judit Pérez Romero, Gabrijela Zaharijas, A. Aguirre-Santaella, E. Amato, E. O. Angüner, Christopher Eckner, 2021, other component parts

Abstract: Astrophysical observations provide strong evidence that more than 80% of all matter in the Universe is in the form of dark matter (DM). Two leading candidates of particles beyond the Standard Model that could constitute all or a fraction of the DM content are the so-called Weakly Interacting Massive Particles (WIMPs) and Axion-Like Particles (ALPs). The upcoming Cherenkov Telescope Array, which will observe gamma rays between 20 GeV and 300 TeV with unprecedented sensitivity, will have unique capabilities to search for these DM candidates. A particularly promising target for WIMP searches is the Galactic Center. WIMPs with annihilation cross sections correctly producing the DM relic density will be detectable with CTA, assuming an Einasto-like density profile and WIMP masses between 200 GeV and 10 TeV. Regarding new physics beyond DM, CTA observations will also enable tests of fundamental symmetries of nature such as Lorentz invariance.
Keywords: dark matter, weakly interacting massive particles, axion-like particles, fundamental physics, Lorentz invariance, Cherenkov Telescope Array Observatory
Published in RUNG: 09.01.2025; Views: 639; Downloads: 5
.pdf Full text (6,31 MB)
This document has many files! More...

Search done in 0.04 sec.
Back to top