1. Estimating the Depth of Shower Maximum using the Surface Detectors of the Pierre Auger ObservatoryCarlos José Todero Peixoto, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays (UHECR), extensive air showers, Auger Surface Detector (SD) array, depth
of shower maximum Published in RUNG: 21.12.2020; Views: 2892; Downloads: 68 Full text (850,78 KB) |
2. The surface detector array of the Telescope Array experimentT. Abu-Zayyad, Jon Paul Lundquist, 2012, original scientific article Abstract: The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector. Keywords: Ultra-high energy cosmic rays, Telescope Array experiment, Extensive air shower array Published in RUNG: 19.05.2020; Views: 3305; Downloads: 0 This document has many files! More... |
3. Study of Ultra-High Energy Cosmic Ray composition using Telescope Array’s Middle Drum detector and surface array in hybrid modeR.U. Abbasi, Jon Paul Lundquist, 2015, original scientific article Abstract: Previous measurements of the composition of Ultra-High Energy Cosmic Rays (UHECRs) made by the High Resolution Fly’s Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory, but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in some, but not all, respects in methodology to PAO, and good agreement is evident between data and a light, largely protonic, composition when comparing the measurements to predictions obtained with the QGSJetII-03 and QGSJet-01c models. These models are also in agreement with previous HiRes stereo measurements, confirming the equivalence of the stereo and hybrid methods. The data is incompatible with a pure iron composition, for all models examined, over the available range of energies. The elongation rate and mean values of are in good agreement with Pierre Auger Observatory data. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique. Keywords: Ultra-High Energy Cosmic Rays, Cosmic ray composition, Atmospheric fluorescence, Extensive air shower array, Hybrid, Telescope Array Published in RUNG: 24.04.2020; Views: 3640; Downloads: 0 This document has many files! More... |
4. Initial results of a direct comparison between the Surface Detectors of the Pierre Auger Observatory and the Telescope ArrayR. Takeishi, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Pierre Auger Observatory (Auger) in Mendoza, Argentina and
the Telescope Array (TA) in Utah, USA aim at unraveling the
origin and nature of Ultra-High Energy Cosmic Rays (UHECR).
At present, there appear to be subtle differences between Auger
and TA results and interpretations. Joint working groups have
been established and have already reported preliminary
findings. From an experimental standpoint, the Surface
Detectors (SD) of both experiments make use of different
detection processes not equally sensitive to the components of
the extensive air showers making it to the ground. In particular, the muonic component of the shower measured at
ground level can be traced back to the primary composition,
which is critical for understanding the origin of UHECRs.
In order to make direct comparisons between the SD detection
techniques used by Auger and TA, a joint SD experimental
research program is being developed. In the first phase,
two Auger SD stations were deployed at the TA Central Laser
Facility to compare station-level responses. This paper
concentrates on the results obtained with the first Auger SD
station (an “Auger North” design), which has been operating
since October 2014. The second Auger SD station, identical to
the ones being operated at Auger in Argentina (an “Auger South”
design), was just deployed in June 2015. The second phase of
this research program will be to co-locate six Auger North SD
stations with TA stations in the field to compare event-level
responses. Keywords: Ultra-High Energy Cosmic Rays, Pierre Auger Observatory, Telescope Array, extensive air showers, secondary cosmic rays, muonic shower component, surface detectors Published in RUNG: 08.03.2016; Views: 5403; Downloads: 191 Full text (1,42 MB) |
5. Report of the Working Group on the Composition of Ultra-High Energy Cosmic RaysMichael Unger, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The atmospheric depth, Xmax, at which the particle number of
an air shower reaches its maximum is a good indicator for the
mass of the primary particle. We present a comparison of the
energy evolution of the mean of Xmax as measured by the
Telescope Array and c Collaborations. After
accounting for the different resolutions, acceptances and
analysis strategies of the two experiments, the two results are
found to be in good agreement within systematic uncertainties. Keywords: Pierre Auger Observatory, Telescope Array, Ultra-High Energy Cosmic Rays, elemental composition, extensive air showers, the atmospheric depth of the air shower maximum Published in RUNG: 08.03.2016; Views: 5245; Downloads: 238 Full text (329,86 KB) |