1.
Space weather research with the Pierre Auger ObservatoryMiha Živec, 2019, master's thesis
Abstract: Space weather refers to environmental conditions in the interplanetary space and Earth’s
magnetosphere, ionosphere and exosphere and can influence the performance and reliability
of electronics based technological systems. The major role in space weather
changes plays the solar wind, a stream of charged particles (mostly electrons and protons)
with energies of approximately 1 keV, that can cause geomagnetic storms and auroras.
During their entry into the atmosphere, high energy cosmic rays collide with atomic
nuclei of atmospheric gasses. When scattering occurs extensive air showers are created.
Those cascades of secondary particles create flashes of light due to the Cherenkov
effect as well as excite molecules of nitrogen gas in atmosphere, which then glow in
fluorescent light. In order to observe the light created by air showers, it has to be
collected with telescopes. The particles from the cascades that reach ground can be
detected with surface detectors. The Pierre Auger Observatory is the largest observatory
for cosmic ray measurements. It is located in Argentinian pampas covering an area of
3000 km2. It consists of 1660 surface detectors and 27 fluorescence telescopes. For
cosmic rays with energies above few 1017 eV, a precise reconstruction of energy and
direction of primary particle is achievable. Observatory also allows measurement of
flux of incoming particles down to primary energies in ca. 10 GeV - 10 TeV interval, with a median energy ca. 80-90 GeV. This measurement capability is called "scaler"
mode, since the corresponding data consist of scaler counted cascade particles with
deposited energy between 15 and 100 MeV, at the average rate of 2 kHz per individual
surface detector.
For the purpose of this master thesis I compared the data from scaler mode measurements
with measurements of neutron monitors, which are commonly used for space weather
observations. With the correlation received from the comparison, I showed that scaler
mode operation of Pierre Auger observatory can be used to monitor space weather events
such as solar cycle and the decreases in the observed galactic cosmic ray intensity due
to solar wind (Forbush decrease).
Keywords: Pierre Auger Observatory, cosmic rays, space weather, Forbush decrease
Published in RUNG: 17.09.2019; Views: 6134; Downloads: 196
Full text (5,21 MB)