1. Cherenkov Telescope Array potential in the search for Galactic PeVatronsE.O. Angüner, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Abstract: One of the major scientific objectives of the future Cherenkov Telescope Array (CTA) Observatory is the search for PeVatrons. PeVatrons are cosmic-ray factories able to accelerate nuclei at least up to the knee feature seen in the spectrum of cosmic rays measured near the Earth. CTA will perform a survey of the full Galactic plane at TeV energies and beyond with unprecedented sensitivity. The determination of efficient criteria to identify PeVatron candidates during the survey is essential in order to trigger further dedicated observations. Here, we present results from a study based on simulations to determine these criteria. The outcome of the study is a PeVatron figure of merit, defined as a metric that provides relations between spectral parameters and spectral cutoff energy lower limits. In addition, simulations of the PeVatron candidate HESS J1641−463 and its parental particle spectrum are presented and discussed. Eventually, our work is applied to simulated population of Galactic PeVatrons, with the aim to determine the sensitivity of CTA. Keywords: Galactic cosmic rays, very-high-energy gamma rays, Galactic PeVatrons, Cherenkov Telescope Array (CTA) Observatory, Galactic plane survey, H.E.S.S. J1641−463 PeVatron candidate Published in RUNG: 08.11.2024; Views: 245; Downloads: 5 Full text (677,22 KB) This document has many files! More... |
2. Prospects for a survey of the galactic plane with the Cherenkov Telescope ArrayK. Abe, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2024, original scientific article Abstract: Approximately one hundred sources of very-high-energy (VHE) gamma rays are known in the Milky Way, detected with a combination of targeted observations and surveys. A survey of the entire Galactic Plane in the energy range from a few tens of GeV to a few hundred TeV has been proposed as a Key Science Project for the upcoming Cherenkov Telescope Array Observatory (CTAO). This article presents the status of the studies towards the Galactic Plane Survey (GPS). We build and make publicly available a sky model that combines data from recent observations of known gamma-ray emitters with state-of-the-art physically-driven models of synthetic populations of the three main classes of established Galactic VHE sources (pulsar wind nebulae, young and interacting supernova remnants, and compact binary systems), as well as of interstellar emission from cosmic-ray interactions in the Milky Way. We also perform an optimisation of the observation strategy (pointing pattern and scheduling) based on recent estimations of the instrument performance. We use the improved sky model and observation strategy to simulate GPS data corresponding to a total observation time of 1620 hours spread over ten years. Data are then analysed using the methods and software tools under development for real data. Under our model assumptions and for the realisation considered, we show that the GPS has the potential to increase the number of known Galactic VHE emitters by almost a factor of five. This corresponds to the detection of more than two hundred pulsar wind nebulae and a few tens of supernova remnants at average integral fluxes one order of magnitude lower than in the existing sample above 1 TeV, therefore opening the possibility to perform unprecedented population studies. The GPS also has the potential to provide new VHE detections of binary systems and pulsars, to confirm the existence of a hypothetical population of gamma-ray pulsars with an additional TeV emission component, and to detect bright sources capable of accelerating particles to PeV energies (PeVatrons). Furthermore, the GPS will constitute a pathfinder for deeper follow-up observations of these source classes. Finally, we show that we can extract from GPS data an estimate of the contribution to diffuse emission from unresolved sources, and that there are good prospects of detecting interstellar emission and statistically distinguishing different scenarios. Thus, a survey of the entire Galactic plane carried out from both hemispheres with CTAO will ensure a transformational advance in our knowledge of Galactic VHE source populations and interstellar emission. Keywords: very-high-energy gamma rays, Cherenkov Telescope Array Observatory, CTAO Galactic Plane Survey, galactic cosmic rays, pulsar wind nebulae, supernova remnants, galactic PeVatrons, binary systems, diffuse emission Published in RUNG: 28.10.2024; Views: 352; Downloads: 0 Full text (4,26 MB) This document has many files! More... |
3. Possible interpretations of the joint observations of UHECR arrival directions using data recorded at the Telescope Array and the Pierre Auger ObservatoryMikhail Kuznetsov, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution Abstract: Various hints for anisotropies in the distribution of arrival directions of ultra-high-energy cosmic rays (UHECRs) have been reported. Still, our poor knowledge about extragalactic and Galactic
magnetic fields and about the UHECR mass composition makes it non-trivial to interpret such results in terms of possible models of UHECR sources. In this work, we apply the same analyses that have been performed on the Pierre Auger Observatory and the Telescope Array UHECR data to a variety of Monte Carlo simulations generated according to many different combinations of hypotheses about the sources, composition and magnetic deflections of UHECRs. We find that
only some of these models can yield results similar to those obtained with the real data. Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions Published in RUNG: 23.01.2024; Views: 1570; Downloads: 7 Full text (1,30 MB) This document has many files! More... |
4. Update on the searches for anisotropies in UHECR arrival directions with the Pierre Auger Observatory and the Telescope ArrayLorenzo Caccianiga, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution Abstract: The origin of ultra-high-energy cosmic rays (UHECRs), particles from outer space with energies �≥1 EeV, is still unknown, though the near-isotropy of their arrival direction distribution excludes a dominant Galactic contribution, and interactions with background photons prevent them from travelling cosmologically large distances. This suggests that their sources must be searched for in nearby galaxy groups and clusters. Deflections by intergalactic and Galactic magnetic fields are expected to hinder such searches but not preclude them altogether. So far, the only anisotropy detected with statistical significance ≥ 5� is a modulation in right ascension in the data from the Pierre Auger Observatory at �≥8 EeV interpretable as a 7% dipole moment. Various hints for higher-energy, smaller-scale anisotropies have been reported. UHECR arrival direction data from both the Pierre Auger Observatory and the Telescope Array experiment have been searched for anisotropies by a working group with members from both collaborations; combining the two datasets requires a cross-calibration procedure due to the different systematic uncertainties on energy measurements but allows us to perform analyses that are less model-dependent than what can be done with partial sky coverage. We report a significant dipole pointing away from the Galactic Center and a ∼4.6� anisotropy found when comparing the directions of UHECRs with a catalog of starburst galaxies. Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays, anisotropy, galactic magnetic fields, telescope array, arrival directions Published in RUNG: 23.01.2024; Views: 1577; Downloads: 6 Full text (4,36 MB) This document has many files! More... |
5. Constraining models for the origin of ultra-high-energy cosmic rays with a novel combined analysis of arrival directions, spectrum, and composition data measured at the Pierre Auger ObservatoryA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, original scientific article Abstract: The combined fit of the measured energy spectrum and shower maximum depth
distributions of ultra-high-energy cosmic rays is known to constrain the parameters of
astrophysical models with homogeneous source distributions. Studies of the distribution of
the cosmic-ray arrival directions show a better agreement with models in which a fraction of
the flux is non-isotropic and associated with the nearby radio galaxy Centaurus A or with
catalogs such as that of starburst galaxies. Here, we present a novel combination of both
analyses by a simultaneous fit of arrival directions, energy spectrum, and composition data
measured at the Pierre Auger Observatory. The model takes into account a rigidity-dependent magnetic field blurring and an energy-dependent evolution of the catalog contribution shaped by interactions during propagation.
We find that a model containing a flux contribution from the starburst galaxy catalog
of around 20% at 40 EeV with a magnetic field blurring of around 20◦ for a rigidity of
10EV provides a fair simultaneous description of all three observables. The starburst galaxy
model is favored with a significance of 4.5σ (considering experimental systematic effects)
compared to a reference model with only homogeneously distributed background sources.
By investigating a scenario with Centaurus A as a single source in combination with the
homogeneous background, we confirm that this region of the sky provides the dominant
contribution to the observed anisotropy signal. Models containing a catalog of jetted active
galactic nuclei whose flux scales with the γ-ray emission are, however, disfavored as they
cannot adequately describe the measured arrival directions. Keywords: ultra high energy cosmic rays, cosmic ray experiments, Pierre Auger Observatory, active galactic nuclei Published in RUNG: 19.01.2024; Views: 1422; Downloads: 40 Full text (3,93 MB) This document has many files! More... |
6. First results from the AugerPrime Radio DetectorT. Fodran, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: The Pierre Auger Observatory investigates the properties of the highest-energy cosmic rays with unprecedented precision. The aim of the AugerPrime upgrade is to improve the sensitivity to the primary particle type. The improved mass sensitivity is the key to exploring the origin of the highest-energy particles in the Universe. The purpose of the Radio Detector (as part of AugerPrime) is to extend the sensitivity of the mass measurements to zenith angles in the range from 65° to 85°. A radio antenna, sensitive in two polarization directions and covering a bandwidth from 30 to 80 MHz, will be added to each of the 1661 surface detector stations over the full 3000 km^2 area, forming the world’s largest radio array for the detection of cosmic particles. Since November 2019, an engineering array comprised of ten stations has been installed in the field. The radio antennas are calibrated using the Galactic (diffuse) emission. The sidereal
modulation of this signal is monitored continuously and is used to obtain an end-to-end calibration from the receiving antenna to the ADC in the read-out electronics. The calibration method and first results will be presented. The engineering array is also fully integrated in the data acquisition of the Observatory and records air showers regularly. The first air showers detected simultaneously with the water-Cherenkov detectors and the Radio Detectors will be presented. Simulations of the detected showers, based on the reconstructed quantities, have been conducted with CORSIKA/CoREAS. A comparison of the measured radio signals with those predicted by simulations exhibits satisfying agreement. Keywords: Pierre Auger Observatory, AugerPrime, indirect detection, radio detection, radio antenna array, surface detection, ground array, ultra-high energy, cosmic rays, galactic radio emission Published in RUNG: 04.10.2023; Views: 1583; Downloads: 7 Full text (1,62 MB) This document has many files! More... |
7. Indication of a mass-dependent anisotropy above 10^18.7 eV in the hybrid data of the Pierre Auger ObservatoryE.W. Mayotte, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: We test the hypothesis of an anisotropy laying along the galactic plane which depends on the mass of primary cosmic-rays. The sensitivity to primary mass is provided by the depth of shower maximum, Xmax, from hybrid events measured at the Pierre Auger Observatory. The 14 years of available data are split into on- and off-plane regions using the galactic latitude of each event to form two distributions in Xmax, which are compared using the Anderson-Darling 2-samples test.
A scan over a subset of the data is used to select an optimal threshold energy of 10^18.7 eV and a galactic latitude splitting at |b|=30∘, which are then set as a prescription for the remaining data. With these thresholds, the distribution of Xmax from the on-plane region is found to have a 9.1±1.6+2.1−2.2 g/cm2 shallower mean and a 5.9±2.1+3.5−2.5 g/cm2 narrower width than that of the off-plane region. These differences are as such to indicate that the mean mass of primary particles arriving from the on-plane region is greater than that of those coming from the off-plane region.
Monte-Carlo studies yield a 4.4σ post-penalization statistical significance for the independent data. Including the scanned data results in a 4.9+1.4−1.5σ post-penalization statistical significance, where the uncertainties are of systematic origin. Accounting for systematic uncertainties leads to an indication for anisotropy in mass composition above 10^18.7 eV at a confidence level of 3.3σ. The anisotropy is observed independently at each of the four fluorescence telescope sites. Interpretations of possible causes of the observed effect are discussed. Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, composition, anisotropy, Xmax, galactic plane Published in RUNG: 03.10.2023; Views: 1566; Downloads: 8 Full text (1,33 MB) This document has many files! More... |
8. Effects of Galactic magnetic field on the UHECR anisotropy studiesR. Higuchi, Jon Paul Lundquist, 2022, published scientific conference contribution Abstract: Telescope Array (TA) and Auger experiments reported anisotropies in the arrival direction of ultrahigh-energy cosmic rays (UHECRs). In particular, Auger Collaboration reported a correlation
between UHECR events and the flux model of assumed sources and suggested a contribution of
starburst galaxies (SBGs) to the anisotropy of UHECRs. However, in their study, the effect of
coherent deflections by the galactic magnetic field (GMF) is not taken into account. In this study, we investigated the effect of the GMF on the arrival directions of UHECRs using the cosmic ray propagation code CRPropa3. We used a backtracking technique which consists of propagating antiparticles to map the flux outside the galaxy to at the earth. We estimate the systematic effects caused by GMF in the reported likelihood analysis. We conduct likelihood analysis for mock UHECR datasets based on the flux pattern through the GMF model. We found systematic decrease of (f_ani, �) due to GMF. As prospects for the TAx4 experiment and joint analysis of Auger and TA collaborations, we develop the likelihood analysis method with the convolution of the rigidity spectrum. Keywords: Telescope Array, TAx4, ultra-high energy, cosmic rays, anisotropy, galactic magnetic field, starburst galaxies Published in RUNG: 29.09.2023; Views: 1392; Downloads: 6 Full text (1,97 MB) This document has many files! More... |
9. The UHECR-FR0 radio galaxy connection : a multi-messenger study of energy spectra/composition emission and intergalactic magnetic field propagationJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially
significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence
in the local universe compared to more powerful radio galaxies (about five times more than
FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine
the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation
results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral
indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations
include the approximately isotropic distribution of FR0 galaxies and various intergalactic
magnetic field configurations (including random and structured fields) and predict the fluxes of
secondary photons and neutrinos produced during UHECR propagation through cosmic photon
backgrounds. This comprehensive simulation allows for investigating the properties of the FR0
sources using observational multi-messenger data. Keywords: ultra-high energy cosmic rays, UHECR propagation, CRPropa, active galactic nuclei, jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum Published in RUNG: 24.08.2023; Views: 1799; Downloads: 5 Full text (1,12 MB) This document has many files! More... |
10. Sensitivity of the Cherenkov Telescope Array to spectral signatures of hadronic PeVatrons with application to Galactic Supernova RemnantsFabio Acero, Saptashwa Bhattacharyya, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, original scientific article Keywords: gamma-rays, cosmic rays, Galactic PeVatrons, Galactic supernova remnants, Cherenkov Telescope Array Published in RUNG: 14.04.2023; Views: 2024; Downloads: 0 This document has many files! More... |