Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 3 / 3
First pagePrevious page1Next pageLast page
1.
Effective microorganisms technology applied to sewage sludge and tested in short exposure on Lepidium sativum
Tanja Buh, Leja Goljat, Darian Rampih, Petra Makorič, Sara Pignattelli, 2024, original scientific article

Abstract: Sewage sludge has fertilizer properties and can supply a large amount of necessary nutrients to the crops, because it is full of organic matter, carbon, nitrogen and other nutrients, but on the other hand, it also contains a lot of toxic compounds, derived from its origin, such as heavy metals, antibiotics and microplastics. Effective microorganisms are a collection of naturally occurring beneficial microorganisms that are able to coexist and are commonly used in agriculture and gardening to improve plant performance and production. In this study, increasing concentrations of sewage sludge alone and added with effective microorganisms were evaluated in a short exposure on Lepidium sativum L. Parameters that were evaluated are: (i) percentage inhibition of germination, (ii) root length, (iii) biomass, (iv) soil pH, (v) total organic carbon and nitrogen both at soil and at root level. Results carried out from our experiment highlighted that effective microorganisms when coupled with sludge are able to restore biometric parameters by resetting seeds germinability inhibition and improving root elongation more than 50% when compared with plants added only with sludge, restoring the values almost of those to the control plants, as well as for soil pH values. Total organic carbon and total nitrogen are boosted at soil level almost at 50% when compared with the same concentrations added only with sludge, while at root level they appear decreased only in plants directly added with sludge treated with effective microorganisms
Keywords: sewage sludge, effective microorganism, total organic carbon, total nitrogen, germinability, short plants exposure, acute toxicity, biomass, pH
Published in RUNG: 12.04.2024; Views: 179; Downloads: 0
URL Link to file
This document has many files! More...

2.
An in situ proton filter covalent organic framework catalyst for highly efficient aqueous electrochemical ammonia production
Kayaramkodath C. Ranjeesh, Sukhjot Kaur, Abdul K. Mohammed, Safa Gaber, Divyani Gupta, Khaled Badawy, Mohamed Aslam, Nirpendra Singh, Tina Škorjanc, Matjaž Finšgar, 2023, original scientific article

Abstract: The electrocatalytic nitrogen reduction reaction (NRR) driven by renewable electricity provides a green synthesis route for ammonia (NH3) production under ambient conditions but suffers from a low conversion yield and poor Faradaic efficiency (F.E.) because of strong competition from hydrogen evolution reaction (HER) and the poor solubility of N2 in aqueous systems. Herein, an in situ proton filter covalent organic framework catalyst (Ru-Tta-Dfp) is reported with inherent Ruthenium (Ru) sites where the framework controls reactant diffusion by suppressing proton supply and enhancing N2 flux, causing highly selective and efficient catalysis. The smart catalyst design results in a remarkable ammonia production yield rate of 2.03 mg h−1 mgcat−1 with an excellent F.E. of ≈52.9%. The findings are further endorsed with the help of molecular dynamics simulations and control COF systems without in situ proton filter feasibility. The results point to a paradigm shift in engineering high-performance NRR electrocatalysts for more feasible green NH3 production.
Keywords: covalent organic frameworks, ammonia, electrochemical synthesis, electrochemistry, nitrogen reduction reaction, ruthenium
Published in RUNG: 11.12.2023; Views: 502; Downloads: 5
.pdf Full text (2,77 MB)
This document has many files! More...

3.
Search done in 0.02 sec.
Back to top