1.
Photoelectrochemical conversion of biomass alcohols using in-situ Sn-doped ▫$\alpha-Fe_2O_3$▫ thin filmsManel Machreki,
Artem Badasyan,
Dušan Žigon,
Georgi Tyuliev,
Saim Emin, 2025, original scientific article
Abstract: Transformation of biomass into value-added chemicals and fuels is considered an upcycling process that is beneficial to resource utilization. In this study, we used a photoelectrochemical (PEC) approach for selective oxidation of propane-1,2,3-triol to dihydroxyacetone (DHA) with high efficiency and selectivity (99%) using Sn-doped -Fe2O3 (Sn:-Fe2O3) thin films with intrinsic oxygen vacancies (OVs). DHA is an essential compound utilized in the cosmetic industry. In a similar manner, we conducted the first study of the PEC oxidation of 4-hydroxy-3-methoxybenzyl alcohol under visible light. A kinetic model has been formulated and solved to find the time-dependent generation of the products. Electrochemical impedance analyses and PEC experiments demonstrated a correlation between the concentration of molecules and the catalytic performance of Sn:-Fe2O3. Studies using scavengers indicate that the photogenerated holes (h+), singlet oxygen (1O2), hydroxyl radicals (•OH), and superoxide radicals (•O2–) play key roles in achieving high PEC activity. This work provided a new perspective on designing efficient PEC systems for biomass conversion into energy and value-added chemicals.
Keywords: Sn-doped alpha-Fe2O3, oxygen vacancies, photoelectrochemical oxidation, propane-1, 2, 3-triol, 4-hydroxy-3-methoxybenzyl alcohol
Published in RUNG: 08.01.2025; Views: 204; Downloads: 3
Link to file
This document has many files! More...