11. Giant magneto–electric coupling in 100 nm thick Co capped by ZnO nanorodsGiovanni Vinai, Barbara Ressel, Piero Torelli, Federico Loi, Benoit Gobaut, Regina Ciancio, Barbara Casarin, Antonio Caretta, Luca Capasso, Fulvio Parmigiani, Francesco Cugini, Massimo Solzi, Marco Malvestuto, Roberta Ciprian, 2018, original scientific article Keywords: ZnO nanorods, Cobalt, X-rays absorption near edge spectroscopy Published in RUNG: 07.02.2018; Views: 4886; Downloads: 0 This document has many files! More... |
12. New strategy for magnetic gas sensingRoberta Ciprian, Piero Torelli, Angelo Giglia, B Gobaut, Barbara Ressel, Janez Štupar, Matija Stupar, Antonio Caretta, Giovanni De Ninno, Tommaso Pincelli, Barbara Casarin, Ganesh Adhikari, G Sberviglieri, C Baratto, Marco Malvestuto, 2016, original scientific article Keywords: hybrid nanostructures, sensor, absorption spectroscopy Published in RUNG: 05.02.2018; Views: 4944; Downloads: 0 This document has many files! More... |
13. Design of a highly photocatalytically active ZnO/CuWO4 nanocompositeSaim Emin, Matjaž Valant, 2017, published scientific conference contribution abstract (invited lecture) Abstract: We report the synthesis, photocatalytic activity and mechanistic study of a novel heterostructure (HTS) with an efficient charge separation. A ZnO/CuWO4 HTS material is reported for the first time. The nanocomposite (NC) consists of CuWO4 nanoparticles (ca. 200-400 nm) decorated with ZnO nanorods (ca. 30 nm, 100 nm length) and is shown to be a highly active photocatalyst for decomposition of model contaminants including methyl orange and terephthalic acid. The ZnO/CuWO4 interface is shown to be the key for controlling the enhanced activity of the composite material. Transient absorption spectroscopy studies demonstrated that a photoinduced charge transfer across the ZnO/CuWO4 interface increased electron-hole lifetime by 3 orders of magnitude, from < 20 s in ZnO to 30 ms in the ZnO/CuWO4 NC sample. Our findings show that through interface design efficient HTS materials can be prepared for a wide range of photocatalytic applications. Keywords: CuWO4, nanocomposite, transient absorption spectroscopy Published in RUNG: 28.08.2017; Views: 6283; Downloads: 0 This document has many files! More... |
14. Operando characterization of batteries using x-ray absorption spectroscopy: advances at the beamline XAFS at synchrotron ElettraGiuliana Aquilanti, marco Giorgetti, Robert Dominko, Lorenzo Stievano, Iztok Arčon, Nicola Novello, Luca Ivanc Olivieri, 2017, original scientific article Abstract: X-ray absorption spectroscopy is a synchrotron radiation based technique that is able to
provide information on both local structure and electronic properties in a chemically selective
manner. It can be used to characterize the dynamic processes that govern the electrochemical
energy storage in batteries, and to shed light on the redox chemistry and changes in structure
during galvanostatic cycling to design cathode materials with improved properties. Operando
XAS studies have been performed at beamline XAFS at Elettra on different systems. For
Li-ion batteries, a multiedge approach revealed the role of the different cathode components
during the charge and discharge of the battery. In addition, Li-S batteries for automotive
applications were studied. Operando sulfur K-edge XANES and EXAFS analysis was used to
characterize the redox chemistry of sulfur, and to relate the electrochemical mechanism to its
local structure. Keywords: operando studies, x-ray absorption spectroscopy, Li-ion batteries, Li-S batteries Published in RUNG: 03.03.2017; Views: 7223; Downloads: 0 This document has many files! More... |
15. Photocatalytic Activity of Zirconium- and Manganese- Codoped Titania in Aqueous Media: The Role of the Metal Dopant and its Incorporation SiteO. L. Pliekhov, Iztok Arčon, Nataša Novak Tušar, Urška Lavrenčič Štangar, 2016, original scientific article Abstract: The development of efficient TiO2-based photocatalysts for
water treatment is mainly performed by doping with transition
metals or by establishing junctions between different phases,
metal–semiconductor or semiconductor–semiconductor. We
present, for the first time, the synthesis of Zr- and Mn-modified
TiO2 by a redesigned sol–gel technique that allows the formation
of heterometallic bridges on the TiO2 surface. Cations of
the doping metals are located in the pores of mesoporous
anatase and attached to the crystalline TiO2 walls. The presence
of the Zr enhances the photoactivity of the TiO2 catalyst.
However, the introduction of Mn decreases the photocatalytic
efficiency in a nonadditive manner. The inhibition effect was
assigned to the side reaction between hydroxyl radicals and
Mn ions. The fact that Mn effectively scavenges the hydroxyl
radicals and, consequently, inhibits the whole oxidation process
is direct proof that hydroxyl radicals are the main reactive
species in the photocatalytic oxidative processes on TiO2 surfaces
in aqueous media and the process of COH generation is the
rate-determining step, which was confirmed using a method
based on the decolorization of a commercial dye Bezaktiv Blau
in a reaction with Fenton’s reagent as a source of hydroxyl radicals. Keywords: doping, manganese, oxidation, X-ray absorption spectroscopy, zirconium Published in RUNG: 21.07.2016; Views: 5046; Downloads: 0 This document has many files! More... |
16. |
17. Chemical and structural investigation of the cobalt phthalocyanineMatija Stupar, 2015, master's thesis Abstract: In the last two decades, studies on organic molecules mimicking substances of fundamental importance in nature, like chlorophyll or hemoglobin, have attracted researchers’ attention. These molecules are building blocks for a family of materials also referred to as “organic semiconductors”. Such compounds can be implemented in numerous applications, ranging from data-storage to light harvesting. Some of their fundamental advantages include low cost, light weight, relatively easy engineering and mechanical flexibility, compatible with bending plastic substrates.
In this thesis work we investigated the chemical, structural and electronic properties of cobalt phthalocyanines (CoPc). These molecules have promising applications in the field of magnetic data storage and spintronics in general, due to the ferromagnetic properties of the cobalt atom. Several techniques like photoemission core-level spectroscopy and valence band spectroscopy, together with X-ray absorption, have been used in order to determine the CoPc properties in gaseous phase, i.e. in the absence of interaction with the surrounding environment.
Another set of experiments was devoted to the commissioning of the CITIUS time-resolved photoemission setup, that will be used in future studies of CoPc molecules on surfaces. Keywords: Cobalt phthalocyanine (CoPc), photoemission spectroscopy (PES), X-ray absorption spectroscopy (XAS), synchrotron radiation, laser, high order harmonic generation (HHG), time resolved spectroscopy Published in RUNG: 29.09.2015; Views: 10025; Downloads: 286 Full text (2,96 MB) |