Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bolonia study programme

Options:
  Reset


11 - 20 / 27
First pagePrevious page123Next pageLast page
11.
Giant magneto–electric coupling in 100 nm thick Co capped by ZnO nanorods
Giovanni Vinai, Barbara Ressel, Piero Torelli, Federico Loi, Benoit Gobaut, Regina Ciancio, Barbara Casarin, Antonio Caretta, Luca Capasso, Fulvio Parmigiani, Francesco Cugini, Massimo Solzi, Marco Malvestuto, Roberta Ciprian, 2018, original scientific article

Found in: ključnih besedah
Summary of found: ...ZnO nanorods, Cobalt, X-rays absorption near edge spectroscopy...
Keywords: ZnO nanorods, Cobalt, X-rays absorption near edge spectroscopy
Published: 07.02.2018; Views: 1581; Downloads: 0
.pdf Fulltext (3,44 MB)

12.
13.
PHOTO-EXCITATION ENERGY INFLUENCE ON THE PHOTOCONDUCTIVITY OF ORGANIC SEMICONDUCTORS
Nadiia Pastukhova, 2018, doctoral dissertation

Abstract: In this work, we experimentally studied the influence of photoexcitation energy influence on the charge transport in organic semiconductors. Organic semiconductors were small molecules like corannulene, perylene and pentacene derivatives, polymers such as polythiophene and benzothiophene derivatives, and graphene, along with combinations of these materials in heterojunctions or composites. The first part of this study is focused on the photoexcitation energy influence on the transient photoconductivity of non-crystalline curved π-conjugated corannulene layers. The enhanced photoconductivity, in the energy range where optical absorption is absent, is deduced from theoretical predictions of corannulene gas-phase excited state spectra. Theoretical analysis reveals a consistent contribution involving transitions to Super Atomic Molecular Orbitals (SAMOs), a unique set of diffuse orbitals typical of curved π-conjugated molecules. More, the photoconductivity of the curved corannulene was compared to the π-conjugated planar N,N′-1H,1H- perfluorobutyldicyanoperylene-carboxydi-imide (PDIF-CN2), where the photoexcitation energy dependence of photocurrent closely follows the optical absorption spectrum. We next characterized charge transport in poly(3-hexylthiophene) (P3HT) layers deposited from solution. Our results indicate that time-of-flight (TOF) mobility depends on the photoexcitation energy. It is 0.4× 10 −3 cm 2 /Vs at 2.3 eV (530 nm) and doubles at 4.8 eV (260 nm). TOF mobility was compared to field-effect (FET) mobility of P3HT field-effect transistors (OFETs). The FET mobility was similar to the 2.3 eV excitation TOF mobility. In order to improve charge mobility, graphene nanoparticles were blended within a P3HT solution before the deposition. We found that the mobility significantly improves upon the addition of graphene nanoparticles of a weight ratio as low as 0.2 %. FET mobility increases with graphene concentration up to a value of 2.3× 10 −2 cm 2 /Vs at 3.2 %. The results demonstrate that phase segregation starts to influence charge transport at graphene concentration of 0.8 % and above. Hence, the graphene cannot form a bridged conduction channel between electrodes, which would cancel the semiconducting effect of the polymer composite. An alternative approach to enhance mobility is to optimize the molecular ordering of organic semiconductors. For that purpose, we studied an innovative nanomesh device. Free-standing nanomesh devices were used to form nanojunctions of N,N′- iiDioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) nanowires and crystalline bis(triisopropylsilylethinyl)pentacene (TIPS-PEN). We characterized the photocurrent response time of this novel nanomesh scaffold device. The photoresponse time depends on the photon energy. It is between 4.5 − 5.6 ns at 500 nm excitation wavelength and between 6.7 − 7.7 ns at 700 nm excitation wavelength. In addition, we found that thermal annealing reduces charge carrier trapping in crystalline nanowires. This confirms that the structural defects are crucial to obtaining high photon-to-charge conversion efficiency and subsequent transport from pn junction in heterostructured materials. Structural defects also influence the power conversion efficiency of organic heterostructured photovoltaics (OPVs). Anticipating that polymers with different backbone lengths produce different level of structural defects, we examined charge transport dependence on the molecular weight of poly[4,8-bis(5-(2- ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2- ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th) from 50 kDa to 300 kDa. We found p-type hopping transport in PTB7-Th, characterized by 0.1 – 3× 10 −2 cm 2 /Vs mobility, which increases with temperature and electric field. The polymer molecular weight exhibits a non-trivial influence on charge transport. FET mobility in the saturation regime increases with molecular weight. A similar trend is observed in TOF mobility and FET mobility in the linear regime, except for the 100kDa polymer, which manifests in the highest mobility due to reduced charge trapping. The lowest trapping at the dielectric interface of OFET is observed at 200 kDa. In addition, the 200 kDa polymer exhibits the lowest activation energy of the charge transport. Although the 100 kDa polymer indicates the highest mobility, OPVs using the 200 kDa polymer exhibit the best performance in terms of power conversion efficiency.
Found in: ključnih besedah
Summary of found: ...photoconductivity, in the energy range where optical absorption is absent, is deduced from theoretical predictions of...
Keywords: organic semiconductors, optical absorption spectroscopy, time-of-flight photoconductivity, transient photocurrent spectroscopy, organic thin film transistors, atomic force microscopy, superatomic molecular orbitals, pn heterojunction, organic nanowires, graphene, composites, charge mobility, charge trapping, temperature dependence, photodetector, photovoltaic, solar cell, organic electronics
Published: 08.10.2018; Views: 2457; Downloads: 93
.pdf Fulltext (4,56 MB)

14.
OXYGEN-EXCESS RELATED DEFECTS IN SiO2-BASED MATERIALS: COUPLING THEORY AND EXPERIMENTS
Blaž Winkler, 2019, doctoral dissertation

Abstract: This work is primarily focused on application of standard first-principle computational approaches to model oxygen excess related point defects in amorphous silica. Atomic models with their respective electronic and optical properties are explored together with some conversion mechanisms between defect models. The first chapter overviews extensive literature about the already known properties of oxygen related defects. Second chapter briefly introduces main methods that have been used in this research, in particular Density Functional Theory (DFT) as energy and force engine with short description of minimal energy path (MEP) algorithm used for modeling chemical/migration reactions, GW approximation for charged electronic excitations (band structure) and Bethe-Salpeter Equation (BSE) for neutral excitations (optical absorption and excitonic structure including electron hole interaction). The third chapter is devoted to the presentation of results. Thanks to the calculation of optical properties of peroxy bridge (POL), a correlation has been found between structural disorder, specifically dihedral angle dispersion, and low coupling with light, which has been identified as main reason why no clear absorption bands have been assigned to the POL. Structure and stability of some other defects, like interstitial ozone molecule (ozonyl) and dioxasilirane (silicon analogy of dioxirane), have been studied. These defects are usually not considered as most important species, however their calculated formation energies are lower compared to some known defects, which indicates they might be present in silica. From a detailed study on possible reaction mechanisms, it has been found that ozonyl might be one of the most important intermediate steps for oxygen exchange reactions. Results also show that dioxasilirane can be spontaneously created during the interaction of oxygen with lone pair defects. By exploring different reactions between oxygen and pre-existing oxygen deficiency centers (ODCs), calculations predict two kinds of passivation behaviors: single-barrier reversible mechanisms with the formation of dioxasilirane-like groups, for which the network keeps the memory of the precursory lone pair defects, and single or multiple-barrier mechanisms, for which the network loses its memory, either because of the high reverse barrier or because of a reconstruction. Final part of this research has been devoted to experimental characterization of the response and tolerance of optical fibers loaded with oxygen under irradiation. These include experiments on commercial fiber along with canonical samples (Optical fibers developed with the intention of studying correlations between different fabrication parameters, dopant/impurity concentration and doping concentrations). Studied fibers also include rare-earth doped fibers.
Found in: ključnih besedah
Summary of found: ...Bethe-Salpeter Equation (BSE) for neutral excitations (optical absorption and excitonic structure including electron hole interaction)....
Keywords: Silica, DFT, GW-approximation, Bethe-Salpeter equation, NEB, defect, oxygen, oxygen excess centers, oxygen deficiency centers, optical absorption, optical fibers, radiation induced attenuation.
Published: 07.05.2019; Views: 1515; Downloads: 88
.pdf Fulltext (13,18 MB)

15.
Trace detection of C2H2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration
Orr-Ewing Andrew, Damien Martin, Iain White, Roberto Grilli, Ruth Lindley, Manik Pradhan, 2008, original scientific article

Abstract: Continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled with sample pre-concentration has been used to measure acetylene (C2H2) mixing ratios in ambient air. Measurements were made in the near-infrared region (λ∼1535.393 nm), using the P(17) rotational line of the (ν1+ν3) vibrational combination band, a region free from interference by overlapping spectral absorption features of other air constituents. The spectrometer is shown to be capable of fast, quantitative and precise C2H2 mixing ratio determinations without the need for gas chromatographic (GC) separation. The current detection limit of the spectrometer following sample pre-concentration is estimated to be 35 parts per trillion by volume (pptv), which is sufficient for direct atmospheric detection of C2H2 at concentrations typical of both urban and rural environments. The CRDS apparatus performance was compared with an instrument using GC separation and flame ionization detection (GC-FID); both techniques were used to analyze air samples collected within and outside the laboratory. These measurements were shown to be in quantitative agreement. The indoor air sample was found to contain C2H2 at a mixing ratio of 3.87±0.22 ppbv (3.90±0.23 ppbv by GC-FID), and the C2H2 fractions in the outside air samples collected on two separate days from urban locations were 1.83±0.20 and 0.69±0.14 ppbv (1.18±0.09 and 0.60±0.04 ppbv by GC-FID). The discrepancy in the first outdoor air sample is attributed to degradation over a 2-month interval between the cw-CRDS and GC-FID analyses.
Found in: ključnih besedah
Summary of found: ...region free from interference by overlapping spectral absorption features of other air constituents. The spectrometer...
Keywords: Rotational Line, Cavity Enhance Absorption Spectroscopy, Adsorbent Trap, Trace Atmospheric Constituent, CRDS Instrument
Published: 15.07.2019; Views: 1077; Downloads: 0
.pdf Fulltext (363,50 KB)

16.
17.
Effects of the molecular potential on coexcitations of valence electrons in the K-shell photoeffect of 3p and 4p elements
Robert Hauko, Jana Padežnik Gomilšek, Alojz Kodre, Iztok Arčon, Giuliana Aquilanti, 2019, original scientific article

Abstract: Photoabsorption spectra of gaseous hydrides of 3p (PH3, H2S, HCl) and 4p elements (GeH4, AsH3 , H2Se, HBr) are measured in the energy region within 50 eV above the K edge, to study coexcitations of valence electrons by photoeffect in the K shell. The analysis of the valence coexcitations is extended to Ar, Kr, and SiH4. Relative probabilities and energies of states in the individual coexcitation channels are recovered by modeling the spectral features with a minimal ansatz based on the features in the contiguous noble gas. The extracted parameters are compared to the results of theoretical calculations for molecules (ORCA code) and free atoms (Hartree-Fock code). The experimental results confirm that the valence coexcitations in the 3p and 4p hydride molecules can be satisfactorily described by a two-step process, with the shake of the outer electron following the excitation of the core electron. The total probability—relative to the K-edge jump—of the shake-up processes shows a steady decrease from 19% in Si to 14% in Cl, and from 15% in Ge to 12% in Br. The experimental values for Ar (12%) and Kr (10%) are in accord with the trend. The dominant contribution is the transition to quasiatomic orbitals, in contrast with the deeper coexcitation channels in hydride molecules where transition to molecular orbitals prevails.
Found in: ključnih besedah
Summary of found: ...X-ray absorption spectra, gaseous hydrides, 3p K-edge spectra, DFT...
Keywords: X-ray absorption spectra, gaseous hydrides, 3p K-edge spectra, DFT
Published: 05.09.2019; Views: 911; Downloads: 0
.pdf Fulltext (926,96 KB)

18.
In-depth structural characterization and magnetic properties ofquaternary ferrite systems Co0.5Zn0.25M0.25Fe2O4(M¼Ni, Cu, Mn, Mg)
Nataša Novak Tušar, Myrjam Mertens, Aurel Pui, Iztok Arčon, Radu-G. Ciocarlan, Elena M. Seftel, Pegie Cool, 2019, original scientific article

Abstract: This paper investigates the structural and magnetic properties of a mixed series of ferrites having generalformula Co0.5Zn0.25M0.25Fe2O4(M¼Ni, Cu, Mn, Mg). Insights on surface chemistry, structural andmorphological parameters are presented in order to achieve highly tuned ferrite systems with specificcharacteristics. The site occupancy of the cations in the spinel structure was determined using XAS, XRDand Raman spectroscopy. A 100% occupancy of the tetrahedral sites was observed for the Zn cations forall the samples. Co cations occupied the octahedral sites in proportion of 100% for CoeZneCu, CoeZneMg and around 80% for CoeZneNi, CoeZneMn. Ni cations were found only in the octahedral sites,while Cu 80% in the octahedral sites and Mn 60% in the octahedral sites. The cation distribution resultswere correlated with the magnetic properties data. At the same time, not only the cation distribution, butalso the particles size distribution was observed to have a great influence on magnetic and opticalproperties of the ferrites. Given the importance of the surface chemistry of the nanoparticles, XPS and FT-IR analysis were used to prove the functionalization with groups belonging to the surfactant. Moreover,the peculiar behavior of manganese in spinel structures was clarified and the origin of the multiple states(Mn2þand Mn4þ) was elucidated. Finally, parallels have been drawn between the use of different cationsin mixed ferrites in order to gain specific properties.
Found in: ključnih besedah
Summary of found: ...FerritesMagnetic propertiesSpinel nanoparticlesX-ray absorption spectroscopyCo-precipitation...
Keywords: FerritesMagnetic propertiesSpinel nanoparticlesX-ray absorption spectroscopyCo-precipitation
Published: 23.10.2019; Views: 1011; Downloads: 0
.pdf Fulltext (2,11 MB)

19.
Mineral element composition in grain of awned and awnletted wheat (Triticum aestivum L.) cultivars tissue-specific iron speciation and phytate and non-phytate ligand ratio
Hiram Castillo Michel, Iztok Arčon, Paula Pongrac, Katarina Vogel-Mikuš, 2020, original scientific article

Abstract: In wheat (Triticum aestivum L.), the awns—the bristle-like structures extending from lemmas—are photosynthetically active. Compared to awned cultivars, awnletted cultivars produce more grains per unit area and per spike, resulting in significant reduction in grain size, but their mineral element composition remains unstudied. Nine awned and 11 awnletted cultivars were grown simultaneously in the field. With no difference in 1000-grain weight, a larger calcium and manganese—but smaller iron (Fe) concentrations—were found in whole grain of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues of frozen-hydrated grain cross-sections revealed that differences in total Fe concentration were not accompanied by differences in Fe speciation (64% of Fe existed as ferric and 36% as ferrous species) or Fe ligands (53% were phytate and 47% were non-phytate ligands). In contrast, there was a distinct tissue-specificity with pericarp containing the largest proportion (86%) of ferric species and nucellar projection (49%) the smallest. Phytate ligand was predominant in aleurone, scutellum and embryo (72%, 70%, and 56%, respectively), while nucellar projection and pericarp contained only non-phytate ligands. Assuming Fe bioavailability depends on Fe ligands, we conclude that Fe bioavailability from wheat grain is tissue specific.
Found in: ključnih besedah
Summary of found: ...of awned than in awnletted cultivars. Micro X-ray absorption near edge structure analysis of different tissues...
Keywords: biofortification, phytate, iron, awn, X-ray fluorescence, X-ray absorption spectrometry, phosphorus, sulphur, nicotianamine
Published: 16.01.2020; Views: 807; Downloads: 0
.pdf Fulltext (2,63 MB)

20.
X-ray absorption spectroscopy set-up for unstable gases: A study of 5p Hydrides
Robert Hauko, Jana Padežnik Gomilšek, Alojz Kodre, Iztok Arčon, 2020, original scientific article

Abstract: An absorption cell is constructed for x-ray absorption spectroscopy of reactive, unstable or hazardous gases at room temperature. In conjunction with in-situ micro-synthesis technique relying on handling the gas in syringes it enabled a first measurement of x-ray absorption spectra in the region of K and L edges for the series of hydrides of 5p elements (SnH4, SbH3, TeH2, HI). The signal-to-noise ratio above 103 was achieved, whereby fine detail is discerned in the spectra, in particular the small sharp features above each absorption edge, testifying of coexcitations of outer electrons in the core photoeffect.
Found in: ključnih besedah
Keywords: X-ray absorption spectroscopy Micro-synthesis absorption cell Gaseous hydrides Multielectron photoexcitations
Published: 10.02.2020; Views: 897; Downloads: 0
.pdf Fulltext (756,39 KB)

Search done in 0 sec.
Back to top