1. Assessment of the COVID-19 lockdown effects on spectral aerosol scattering and absorption properties in Athens, GreeceDimitris G. Kaskaoutis, Georgios Grivas, Eleni Liakakou, Nikos Kalivitis, Giorgos Kouvarakis, Iasonas Stavroulas, Panayiotis Kalkavouras, Pavlos Zarmpas, Umesh Chandra Dumka, Evangelos Gerasopoulos, Nikolaos Mihalopoulos, 2021, original scientific article Abstract: COVID-19 is evolving into one of the worst pandemics in recent history, claiming a death toll of over 1.5 million as of December 2020. In an attempt to limit the expansion of the pandemic in its initial phase, nearly all countries imposed restriction measures, which resulted in an unprecedented reduction of air pollution. This study aims to assess the impact of the lockdown effects due to COVID-19 on in situ measured aerosol properties, namely spectral-scattering (bsca) and absorption (babs) coefficients, black carbon (BC) concentrations, single-scattering albedo (SSA), scattering and absorption Ångström exponents (SAE, AAE) in Athens, Greece. Moreover, a comparison is performed with the regional background site of Finokalia, Crete, for a better assessment of the urban impact on observed differences. The study examines pre-lockdown (1–22 March 2020), lockdown (23 March–3 May 2020) and post-lockdown (4–31 May 2020) periods, while the aerosol properties are also compared with a 3–4 year preceding period (2016/2017–2019). Comparison of meteorological parameters in Athens, between the lockdown period and respective days in previous years, showed only marginal variation, which is not deemed sufficient in order to justify the notable changes in aerosol concentrations and optical properties. The largest reduction during the lockdown period was observed for babs compared to the pre-lockdown (−39%) and to the same period in previous years (−36%). This was intensified during the morning traffic hours (−60%), reflecting the large decrease in vehicular emissions. Furthermore, AAE increased during the lockdown period due to reduced emissions from fossil-fuel combustion, while a smaller (−21%) decrease was observed for bsca along with slight increases (6%) in SAE and SSA values, indicating that scattering aerosol properties were less affected by the decrease in vehicular emissions, as they are more dependent on regional sources and atmospheric processing. Nighttime BC emissions related to residential wood-burning were slightly increased during the lockdown period, with respect to previous-year means. On the contrary, aerosol and pollution changes during the lockdown period at Finokalia were low and highly sensitive to natural sources and processes. Keywords: COVID-19, traffic, aerosol scattering, absorption, SSA, Greece Published in RUNG: 10.05.2024; Views: 550; Downloads: 5 Full text (8,69 MB) This document has many files! More... |
2. Secondary organic aerosol formation from semi- and intermediate-volatility organic compounds and glyoxal : relevance of O/C as a tracer for aqueous multiphase chemistryEleanor M. Waxman, Katja Džepina, Barbara Ervens, Julia Lee-Taylor, Bernard Aumont, Jose L. Jimenez, Sasha Madronich, Rainer Volkamer, 2013, original scientific article Abstract: The role of aqueous multiphase chemistry in the formation of secondary organic aerosol (SOA) remains difficult to quantify. We investigate it here by testing the rapid formation of moderate oxygen-to-carbon (O/C) SOA during a case study in Mexico City. A novel laboratory-based glyoxal-SOA mechanism is applied to the field data, and explains why less gas-phase glyoxal mass is observed than predicted. Furthermore, we compare an explicit gas-phase chemical mechanism for SOA formation from semi- and intermediate-volatility organic compounds (S/IVOCs) with empirical parameterizations of S/IVOC aging. The mechanism representing our current understanding of chemical kinetics of S/IVOC oxidation combined with traditional SOA sources and mixing of background SOA underestimates the observed O/C by a factor of two at noon. Inclusion of glyoxal-SOA with O/C of 1.5 brings O/C predictions within measurement uncertainty, suggesting that field observations can be reconciled on reasonable time scales using laboratory-based empirical relationships for aqueous chemistry. Keywords: secondary organic aerosol, glyoxal, aqueous multiphase chemistry, oxygen-to-carbon ratio, single scattering albedo Published in RUNG: 11.04.2021; Views: 2652; Downloads: 0 This document has many files! More... |
3. Morphology and mixing state of aged soot particles at a remote marine free troposphere site : implications for optical propertiesSwarup China, Barbara Scarnato, Robert C. Owen, Bo Zhang, MarianT. Ampadu, Sumit Kumar, Katja Džepina, Michael P. Dziobak, Paulo Fialho, Judith A. Perlinger, 2015, original scientific article Abstract: The radiative properties of soot particles depend on their morphology and mixing state, but their evolution during transport is still elusive. Here we report observations from an electron microscopy analysis of individual particles transported in the free troposphere over long distances to the remote Pico Mountain Observatory in the Azores in the North Atlantic. Approximately 70% of the soot particles were highly compact and of those 26% were thinly coated. Discrete dipole approximation simulations indicate that this compaction results in an increase in soot single scattering albedo by a factor of <= 2.17. The top of the atmosphere direct radiative forcing is typically smaller for highly compact than mass-equivalent lacy soot. The forcing estimated using Mie theory is within 12% of the forcing estimated using the discrete dipole approximation for a high surface albedo, implying that Mie calculations may provide a reasonable approximation for compact soot above remote marine clouds. Keywords: atmospheric aerosol, soot, long-range transport, free troposphere, single scattering albedo Published in RUNG: 11.04.2021; Views: 2688; Downloads: 0 This document has many files! More... |
4. Aircraft vertical profiles during summertime regional and Saharan dust scenarios over the north-western Mediterranean basin: aerosol optical and physical propertiesJesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemi Perez, Gloria Titos, Griša Močnik, Xavier Querol, A. Alastuey, 2021, original scientific article Abstract: Accurate measurements of the horizontal and vertical distribution of atmospheric aerosol particle optical properties are key for a better understanding of their impact on the climate. Here we present the results of a measurement campaign based on instrumented flights over north-eastern Spain. We measured vertical profiles of size-segregated atmospheric particulate matter (PM) mass concentrations and multi-wavelength scattering and absorption coefficients in the western Mediterranean basin (WMB). The campaign took place during typical summer conditions, characterized by the development of a vertical multi-layer structure, under both summer regional pollution episodes (REGs) and Saharan dust events (SDEs). REG patterns in the region form under high insolation and scarce precipitation in summer, favouring layering of highly aged fine-PM strata in the lower few kma.s.l.
The REG scenario prevailed during the entire measurement campaign. Additionally, African dust outbreaks and plumes from northern African wildfires influenced the study area. The vertical profiles of climate-relevant intensive optical parameters such as single-scattering albedo (SSA); the asymmetry parameter (g); scattering, absorption and SSA Ångström exponents (SAE, AAE and SSAAE); and PM mass scattering and absorption cross sections (MSC and MAC) were derived from the measurements. Moreover, we compared the aircraft measurements with those performed at two GAW–ACTRIS (Global Atmosphere Watch–Aerosol, Clouds and Trace Gases) surface measurement stations located in north-eastern Spain, namely Montseny (MSY; regional background) and Montsec d'Ares (MSA; remote site).
Airborne in situ measurements and ceilometer ground-based remote measurements identified aerosol air masses at altitudes up to more than 3.5 kma.s.l.
The vertical profiles of the optical properties markedly changed according to the prevailing atmospheric scenarios. During SDE the SAE was low along the profiles, reaching values < 1.0 in the dust layers. Correspondingly, SSAAE was negative, and AAE reached values up to 2.0–2.5, as a consequence of the UV absorption increased by the presence of the coarse dust particles. During REG, the SAE increased to > 2.0, and the asymmetry parameter g was rather low (0.5–0.6) due to the prevalence of fine PM, which was characterized by an AAE close to 1.0, suggesting a fossil fuel combustion origin. During REG, some of the layers featured larger AAE (> 1.5), relatively low SSA at 525 nm (< 0.85) and high MSC (> 9 m2 g−1) and were associated with the influence of PM from wildfires. Overall, the SSA and MSC near the ground ranged around 0.85 and 3 m2 g−1, respectively, and increased at higher altitudes, reaching values above 0.95 and up to 9 m2 g−1. The PM, MSC and MAC were on average larger during REG compared to SDE due to the larger scattering and absorption efficiency of fine PM compared with dust. The SSA and MSC had quite similar vertical profiles and often both increased with height indicating the progressive shift toward PM with a larger scattering efficiency with altitude.
This study contributes to our understanding of regional-aerosol vertical distribution and optical properties in the WMB, and the results will be useful for improving future climate projections and remote sensing or satellite retrieval algorithms. Keywords: aerosol, climate change, Saharan dust, black carbon, aerosol absorption, aerosol scattering Published in RUNG: 14.01.2021; Views: 2975; Downloads: 0 This document has many files! More... |