Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 4 / 4
First pagePrevious page1Next pageLast page
1.
Towards a sustainable energy future : evaluating Arundo donax L. in continuous anaerobic digestion for biogas production
Karlo Špelić, Mario Panjicko, Gregor Drago Zupančič, Anamarija Lončar, Ivan Brandić, Ivana Tomić, Ana Matin, Tajana Krička, Vanja Jurišić, 2024, original scientific article

Abstract: Abstract In response to the EU's REPowerEU initiative (COM (2022) 108) which encourages an increase in biogas production by 20% in member states by 2030 to boost energy independence, it has become essential to identify sustainable alternatives to traditional feedstocks for biogas production, especially in the EU Member states where there is still high dependence on corn silage as the main raw material in biogas plants. While corn silage, predominantly used in the European biogas plants today, serves primarily for the livestock sector, alternative sources need to be explored. Therefore, this study aimed to evaluate the potential of Arundo donax, a perennial energy crop, as an alternative feedstock in a continuous anaerobic process. The biogas yield and its quality, characterized by CH4, CO2, H2S and O2 content, were determined during a continuous process with A. donax, compared with two mixed feedstocks of A. donax and corn silage over a 5‐month period in a continuous anaerobic digestion process. The results revealed that A. donax exhibits a biogas yield and methane content comparable to corn silage, indicating its potential as a viable and sustainable alternative feedstock for biogas production.
Keywords: Arundo donax L., biogas quality, continuous anaerobic digestion, corn silage, perennial energy crops, sustainable biogas production
Published in RUNG: 18.03.2025; Views: 434; Downloads: 1
URL Link to file
This document has many files! More...

2.
Biogas production from brewery spent grain as a mono-substrate in a two-stage process composed of solid-state anaerobic digestion and granular biomass reactors
Mario Panjicko, Gregor Drago Zupančič, Romana Marinšek-Logar, Lijana Fanedl, Marina Tišma, Bruno Zelić, 2017, original scientific article

Abstract: Anaerobic digestion of brewery spent grain as a mono-substrate was studied. Brewery spent grain is a substrate consisting largely of cellulose, hemicellulose and lignin, which are difficult to degrade anaerobically, mostly due to the presence of degradation products, such as phenolic compounds, which cause process inhibition. Therefore, a two-stage system was used for anaerobic digestion. Anaerobic digestion was phase separated in a solid-state anaerobic digestion reactor, where microbiological hydrolysis and acidogenesis occurred and in a granular biomass reactor where mostly methanogenesis was performed. The overall process exhibited total solids degradation efficiency between 75.9 and 83.0 %. Average specific biogas production was 414±32 L/kg, whereas biomethane production was 224±34 L/kg of added total solids. Granular biomass after adaptation exhibited stable operation at substrate C/N ratios in range 0.16 – 4.68. p-cresol was present in concentrations up to 45 mg/L and during the process was successfully degraded by granular biomass. The excellent adaptability of granular biomass was confirmed by 68.2 % shift in bacterial and a 31.8 % shift in archaeal community structure in a granular biomass reactor. The structure of the bacterial community from granular biomass reactor and solid-state anaerobic digestion reactor remained 79.4 % similar at the end of the experiment, whereas archaeal community was only 31.6 % similar. The process exhibited stable operation for 198 days, which shows that brewery spent grain can be successfully anaerobically digested and used for biogas production.
Keywords: biogas production, brewery spent grain, C/N ratio, dry digestion, microbial biomass, solid-state anaerobic digestion
Published in RUNG: 18.08.2017; Views: 5747; Downloads: 0
This document has many files! More...

3.
Anaerobic digestion of brewery spent grain as a mono-substrate in a two-stage anaerobic digestion using solid-state digestion reactor and granulated biomass reactor
Mario Panjicko, Gregor Drago Zupančič, Romana Marinšek Logar, Marina Tišma, Bruno Zelić, 2016, published scientific conference contribution (invited lecture)

Abstract: Anaerobic digestion of brewery spent grain as a mono-substrate was studied. Anaerobic digestion was phase separated in solid state anaerobic digestion reactor, where mostly microbiological hydrolysis and acidogenesis and granular biomass reactor where mostly methanogenesis was performed. The overall process exhibited total solids degradation efficiency between 73.6 and 80.4%. Average specific biogas production was 424±36 L/kg, whereas biomethane production was 230±34 L/kg of brewery spent grain total solids. Granular biomass after adaptation exhibited stabile operation at C-N ratios as low as 0.2 – 0.3, which is rare in anaerobic digestion. P-cresol as a degradation product was present in concentrations up to 45 mg/L and during the process successfully degraded. The excellent adaptability of the granular biomass is confirmed by 67% shift in bacterial and a 32% shift in archaeal community structure in granular biomass reactor after 198 days of successful operation.
Keywords: Anaerobic digestion, biogas production, brewery spent grain, microbial biomass, p-cresol degradation, solid state anaerobic digestion
Published in RUNG: 21.10.2016; Views: 7807; Downloads: 0
This document has many files! More...

4.
Biogas production from brewery yeast in an EGSB reactor
Gregor Drago Zupančič, Milenko Roš, Miran Klemenčič, Matej Oset, Romana Marinšek-Logar, 2016, professional article

Abstract: Experience over a five-year period of full throughput using anaerobic co-digestion of brewery yeast for biogas production is described in this contribution. The brewery, with a total amount of available yeast (0.7 v/v %), had a 26.2 % increase in COD load and a 38.5 % increase in biogas production resulting in an increase in the biomethane/natural gas substitution ratio in the brewery from 10 % to 16 %.
Keywords: Anaerobic digestion, biogas production, brewery yeast, brewery wastewater, EGSB
Published in RUNG: 21.04.2016; Views: 8133; Downloads: 0
This document has many files! More...

Search done in 0.02 sec.
Back to top