1. Calibration of the underground muon detector of the Pierre Auger ObservatoryA. Aab, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2021, original scientific article Abstract: To obtain direct measurements of the muon content of extensive air showers with energy above 10[sup]16.5 eV, the Pierre Auger Observatory is currently being equipped with an underground muon detector (UMD), consisting of 219 10 m[sup]2-modules, each segmented into 64 scintillators coupled to silicon photomultipliers (SiPMs). Direct access to the shower muon content allows for the study of both of the composition of primary cosmic rays and of high-energy hadronic interactions in the forward direction. As the muon density can vary between tens of muons per m[sup]2 close to the intersection of the shower axis with the ground to much less than one per m[sup]2 when far away, the necessary broad dynamic range is achieved by the simultaneous implementation of two acquisition modes in the read-out electronics: the binary mode, tuned to count single muons, and the ADC mode, suited to measure a high number of them. In this work, we present the end-to-end calibration of the muon detector modules: first, the SiPMs are calibrated by means of the binary channel, and then, the ADC channel is calibrated using atmospheric muons, detected in parallel to the shower data acquisition. The laboratory and field measurements performed to develop the implementation of the full calibration chain of both binary and ADC channels are presented and discussed. The calibration procedure is reliable to work with the high amount of channels in the UMD, which will be operated continuously, in changing environmental conditions, for several years. Keywords: ultra-high energy cosmic rays, extensive air showers (EAS), EAS muonic component, Pierre Auger Observatory, underground muon detector, detector calibration Published in RUNG: 14.04.2021; Views: 3565; Downloads: 140 Link to full text This document has many files! More... |
2. Studies on the response of a water-Cherenkov detector of the Pierre Auger Observatory to atmospheric muons using an RPC hodoscopeA. Aab, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2020, original scientific article Keywords: ultra-high energy cosmic rays, extensive air showers, Pierre Auger Observatory, water Cherenkov detectors, detector calibration, hodoscope-based calibration Published in RUNG: 11.09.2020; Views: 3962; Downloads: 118 Full text (1,39 MB) |
3. Status and Prospects of the Auger Engineering Radio ArrayJohannes Schulz, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Auger Engineering Radio Array (AERA) is an extension of the
Pierre Auger Observatory. It is used to detect radio emission
from extensive air showers in the 30 - 80 MHz frequency band.
A focus of interest is the dependence of the radio emission on
shower parameters such as the energy and the atmospheric depth
of the shower maximum. After three phases of deployment, AERA
now consists of 153 autonomous radio stations with different
spacings, covering an area of about 17 km2. The size, station
spacings, and geographic location at the same site or near other
Auger extensions, are all targeted at cosmic ray energies above
10[sup]17 eV. The array allows us to explore different
technical schemes to measure the radio emission as well as to
cross calibrate our measurements with the established baseline
detectors of the Auger Observatory. We present the most recent
technological developments and selected experimental results
obtained with AERA. Keywords: Pierre Auger Observatory, the Auger Engineering Radio Array (AERA), radio emission from extensive air showers, detector cross-calibration Published in RUNG: 03.03.2016; Views: 5833; Downloads: 201 Full text (2,79 MB) |
4. Automated procedures for the Fluorescence Detector calibration at the Pierre Auger ObservatoryGaetano Salina, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The quality of the physics results, derived from the analysis
of the data collected at the Pierre Auger Observatory depends
heavily on the calibration and monitoring of the components of
the detectors. It is crucial to maintain a database containing complete information on the absolute calibration of all
photomultipliers and their time evolution. The low rate of the
physics events implies that the analysis will have to be made
over a long period of operation. This requirement imposes a
very organized and reliable data storage and data management
strategy, in order to guarantee correct data preservation and
high data quality. The Fluorescence Detector (FD) consists of
27 telescopes with about 12,000 phototubes which have to be
calibrated periodically. A special absolute calibration system
is used. It is based on a calibrated light source with a
diffusive screen, uniformly illuminating photomultipliers
of the camera. This absolute calibration is performed every few
years, as its use is not compatible with the operation of the
detector. To monitor the stability and the time behavior,
another light source system operates every night of data
taking. This relative calibration procedure yields more than
2×10[sup]4 raw files each year, about 1 TByte/year. In this
paper we describe a new web-interfaced database architecture
to manage, store, produce and analyse FD calibration data.
It contains the configuration and operating parameters of the
detectors at each instant and other relevant functional
parameters that are needed for the analysis or to monitor
possible instabilities, used for the early discovery of
malfunctioning components. Based on over 10 years of
operation, we present results on the long term performance
of FD and its dependence on environmental variables. We also
report on a check of the absolute calibration values by
analysing the signals left by stars traversing the FD field of
view. Keywords: Pierre Auger Observatory, Fluorescence Detector, detector calibration and monitoring, automated calibration procedure Published in RUNG: 03.03.2016; Views: 5223; Downloads: 213 Full text (1,06 MB) |
5. Measurement of the water-Cherenkov detector response to inclined muons using an RPC hodoscopePedro Assis, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Abstract: The Pierre Auger Observatory operates a hybrid detector
composed of a Fluorescence Detector and a Surface Detector
array. Water-Cherenkov detectors (WCD) are the building blocks
of the array and as such play a key role in the detection of
secondary particles at the ground. A good knowledge of the
detector response is of paramount importance to lower
systematic uncertainties and thus to increase the capability
of the experiment in determining the muon content of the
extensive air showers with a higher precision.
In this work we report on a detailed study of the detector
response to single muons as a function of their trajectories
in the WCD. A dedicated Resistive Plate Chambers (RPC)
hodoscope was built and installed around one of the detectors.
The hodoscope is formed by two stand-alone low gas flux
segmented RPC detectors with the test water-Cherenkov detector
placed in between. The segmentation of the RPC detectors is of
the order of 10 cm. The hodoscope is used to trigger and
select single muon events in different geometries. The signal
recorded in the water-Cherenkov detector and performance
estimators were studied as a function of the trajectories of
the muons and compared with a dedicated simulation.
An agreement at the percent level was found, showing that the
simulation correctly describes the tank response. Keywords: Pierre Auger Observatory, Water-Cherenkov detectors, detector calibration, inclined cosmic ray muons, Resistive Plate Chambers (RPC) hodoscope Published in RUNG: 03.03.2016; Views: 5968; Downloads: 201 Full text (1,27 MB) |