Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme


1 - 4 / 4
First pagePrevious page1Next pageLast page
Extrapolating FR-0 radio galaxy source properties from propagation of multi-messenger ultra-high energy cosmic rays
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2021, published scientific conference contribution

Abstract: Recently, it has been shown that relatively low luminosity Fanaroff-Riley type 0 (FR-0) radio galaxies are a good candidate source class for a predominant fraction of cosmic rays (CR) accelerated to ultra-high energies (UHE, E>10[sup]18 eV). FR-0s can potentially provide a significant fraction of the UHECR energy density as they are much more numerous in the local universe than more energetic radio galaxies such as FR-1s or FR-2s (up to a factor of ∼5 with z≤0.05 compared to FR-1s). In the present work, UHECR mass composition and energy spectra at the FR-0 sources are estimated by fitting simulation results to the published Pierre Auger Observatory data. This fitting is done using a simulated isotropic sky distribution extrapolated from the measured FR-0 galaxy properties and propagating CRs in plausible extragalactic magnetic field configurations using the CRPropa3 framework. In addition, we present estimates of the fluxes of secondary photons and neutrinos created in UHECR interactions with cosmic photon backgrounds during CR propagation. With this approach, we aim to investigate the properties of the sources with the help of observational multi-messenger data.
Keywords: jetted active galaxies, FR-0 radiogalaxies, ultra-high energy cosmic rays, extragalactic magnetic fields, UHECR propagation, UHECR interactions, cosmogenic photons, cosmogenic neutrinos
Published in RUNG: 16.08.2021; Views: 1588; Downloads: 1
.pdf Full text (2,04 MB)

Sensitivity of the Cherenkov Telescope Array for probing cosmology and fundamental physics with gamma-ray propagation
H. Abdalla, H. Abe, F. Acero, A. Acharyya, R. Adam, Christopher Eckner, Samo Stanič, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, original scientific article

Abstract: The Cherenkov Telescope Array (CTA), the new-generation ground-based observatory for γ astronomy, provides unique capabilities to address significant open questions in astrophysics, cosmology, and fundamental physics. We study some of the salient areas of γ cosmology that can be explored as part of the Key Science Projects of CTA, through simulated observations of active galactic nuclei (AGN) and of their relativistic jets. Observations of AGN with CTA will enable a measurement of γ absorption on the extragalactic background light with a statistical uncertainty below 15% up to a redshift z=2 and to constrain or detect γ halos up to intergalactic-magnetic-field strengths of at least 0.3 pG . Extragalactic observations with CTA also show promising potential to probe physics beyond the Standard Model. The best limits on Lorentz invariance violation from γ astronomy will be improved by a factor of at least two to three. CTA will also probe the parameter space in which axion-like particles could constitute a significant fraction, if not all, of dark matter. We conclude on the synergies between CTA and other upcoming facilities that will foster the growth of γ cosmology.
Keywords: Cherenkov Telescope Array, active galactic nuclei, gamma-ray experiments, axions, extragalactic magnetic fields
Published in RUNG: 02.03.2021; Views: 2001; Downloads: 70
URL Link to full text
This document has many files! More...

Evidence for a supergalactic structure of magnetic deflection multiplets of ultra-high-energy cosmic rays
R. U. Abbasi, Mitsuhiro Abe, T. Abu-Zayyad, M. Allen, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, S. A. Blake, Jon Paul Lundquist, 2020, original scientific article

Abstract: Evidence for a large-scale supergalactic cosmic-ray multiplet (arrival directions correlated with energy) structure is reported for ultra-high-energy cosmic-ray (UHECR) energies above 1019 eV using 7 years of data from the Telescope Array (TA) surface detector and updated to 10 years. Previous energy–position correlation studies have made assumptions regarding magnetic field shapes and strength, and UHECR composition. Here the assumption tested is that, because the supergalactic plane is a fit to the average matter density of the local large-scale structure, UHECR sources and intervening extragalactic magnetic fields are correlated with this plane. This supergalactic deflection hypothesis is tested by the entire field-of-view (FOV) behavior of the strength of intermediate-scale energy–angle correlations. These multiplets are measured in spherical cap section bins (wedges) of the FOV to account for coherent and random magnetic fields. The structure found is consistent with supergalactic deflection, the previously published energy spectrum anisotropy results of the TA (the Hotspot and Coldspot), and toy-model simulations of a supergalactic magnetic sheet. The seven year data posttrial significance of this supergalactic structure of multiplets appearing by chance, on an isotropic sky, is found by Monte Carlo simulation to be 4.2σ. The 10 years of data posttrial significance is 4.1σ. Furthermore, the starburst galaxy M82 is shown to be a possible source of the TA Hotspot, and an estimate of the supergalactic magnetic field using UHECR measurements is presented.
Keywords: extragalactic magnetic fields, ultra-high-energy cosmic radiation, cosmic rays, high energy astrophysics, astrophysical magnetism, cosmic ray astronomy, cosmic ray sources
Published in RUNG: 05.02.2021; Views: 2144; Downloads: 124
URL Link to full text
This document has many files! More...

Search for energy dependent patterns in the arrival direction of cosmic rays at the Pierre Auger Observatory
Tobias Winchen, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: Energy-dependent patterns in the arrival directions of cosmic rays are expected from deflections in galactic and extragalactic magnetic fields. We report on searches for such patterns in the data of the surface detector of the Pierre Auger Observatory at energies above E = 5 EeV in regions within approximately 15◦ around events with energy E > 60 EeV. No significant patterns are found with this analysis which can be used to constrain parameters in propagation scenarios.
Keywords: ultra-high energy cosmic rays galactic and extragalactic magnetic fields magnetic deflection patterns Pierre Auger Observatory
Published in RUNG: 02.03.2016; Views: 4842; Downloads: 227
.pdf Full text (1019,52 KB)

Search done in 0.03 sec.
Back to top