11. Systematic uncertainty in the analysis of the TA fluorescence detector from fluorescence yield modelsKohei Komori, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, 2023, published scientific conference contribution Abstract: Ultra-high energy cosmic rays have been observed by various experiments such as Telescope Array (TA) and the Pierre Auger Observatory (Auger). There are differences in the energy spectra measured by TA and Auger. One reason for this difference is systematic uncertainty in the energy determination. The fluorescence yield model, which consists of fluorescence emission efficiencies and spectra, is one of the most significant components of this systematic uncertainty. Fluorescence emission efficiencies and spectra have been measured in various experiments, and different measurements are currently used to determine the energy of the TA and Auger experiments. In this study, we estimate the influence of the fluorescence yield model on the systematic uncertainty in the energy determination of the TA fluorescence detector. Keywords: Telescope Array, TAx4, indirect detection, fluorescence detection, fluorescence yield, ultra-high energy, cosmic rays, energy uncertainty Published in RUNG: 09.10.2023; Views: 2279; Downloads: 6 Full text (942,98 KB) This document has many files! More... |
12. Monocular and hybrid analysis for TA×4 fluorescence detectorsYuki Kusumori, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Douglas R. Bergman, 2023, published scientific conference contribution Abstract: The TA×4 project is an extension of the Telescope Array (TA) experiment, aimed at clarifying the origin of the highest energy cosmic rays. It has deployed 4 fluorescence detectors (FDs) and 130 surface detectors (SDs) at the northeast lobe of the original TA array and 8 FDs and 127 SDs at the southeast lobe of the original TA array, expanding the detection area about four times larger than the TA experiment. This expansion enables us to sample larger data. The TA×4 has been collecting data to obtain solid evidence of the excess of events in the arrival direction distribution, known as the TA hotspot, reported in 2014 by the TA experiment. The north and south observations began in 2018 and 2019, respectively, and are ongoing except for a hiatus from February to June 2020 due to the COVID-19 pandemic. In this presentation, we will report the details of TA×4 FD monocular analysis. Keywords: Telescope Array, TAx4, indirect detection, hybrid detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, energy spectrum, composition Published in RUNG: 09.10.2023; Views: 2398; Downloads: 7 Full text (3,20 MB) This document has many files! More... |
13. A study of the systematic effects on the energy scale for the measurement of UHECR spectrum by the TA SD arrayKeitaro Fujita, R. U. Abbasi, Y. Abe, T. Abu-Zayyad, M. Allen, Yasuhiko Arai, R. Arimura, E. Barcikowski, J. W. Belz, Jon Paul Lundquist, 2023, published scientific conference contribution Abstract: We evaluated the systematic deviation of energy scales for the energy spectrum of the highest energy cosmic rays observed by the Telescope Array Surface Detector array due to differences in atmospheric fluorescence yield and missing energy estimation. The energy dependence on the energy scales is also investigated and observationally confirmed by the constant intensity cut method analysis. The results of these studies will be presented. Keywords: Telescope Array, indirect detection, surface detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, energy spectrum, fluorescence yield, missing energy, systematics Published in RUNG: 09.10.2023; Views: 1856; Downloads: 5 Full text (867,73 KB) This document has many files! More... |
14. Cosmic ray mass composition measurement with the TALE hybrid detectorK. Fujita, Jon Paul Lundquist, 2022, published scientific conference contribution Abstract: We report on the cosmic ray mass composition measured by the Telescope Array Low-energy Extension (TALE) hybrid detector. The TALE detector consists of a Fluorescence Detector (FD) station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14 FD telescopes), and a Surface Detector (SD) array of scintillation counters. The SD array consists of 40 counters with 400 m spacing and 40 counters with 600 m spacing. The FD station, with a total of 24 telescopes, overlooks the SD array and provides sky coverage with an elevation angle range of 3∘ to 59∘. In this contribution, we will present the latest result of the cosmic ray mass composition measurement in the energy range from 10^16.5 eV to 10^18.5 eV using almost 5 years of TALE hybrid data. Keywords: Telescope Array, TALE, low energy extension, indirect detection, hybrid detection, ground array, infill array, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, composition Published in RUNG: 09.10.2023; Views: 1883; Downloads: 7 Full text (1,94 MB) This document has many files! More... |
15. Telescope Array Cloud Ranging TestT. Okuda, Jon Paul Lundquist, 2022, published scientific conference contribution Abstract: The Telescope Array (TA) experiment detects air-showers induced by ultra high energy cosmic rays. The TA atmospheric Fluorescence telescopic Detector(TAFD) observes cosmic ray airshower, which is incident very far from the telescope. The observation does not take place in overcast night. However, the cloud status changes quickly and sometimes there are some isolated clouds. If the cloud is behind the airshower as viewed from the TAFD, the cloud presents no problem for airshower reconstruction. However if the cloud obscures the airshower, it does create a problem for airshower reconstruction. The problematic event can be rejected by airshower profile at reconstruction. However, the estimation of exposure with isolated cloud is difficult. And it should be affected more at higher energy event with relatively further from the telescope, which is lower statistics and more important for the ultra high energy cosmic ray physics. Therefore, to test the method for evaluating the correction of exposure, we installed stereo cloud cameras near one of FD sites. I report the status of the study of the Telescope Array Cloud Ranging Test. Keywords: Telescope Array, indirect detection, fluorescence detection, cerenkov light, ultra-high energy, cosmic rays, atmosphere, cloud detection, exposure, air shower reconstruction Published in RUNG: 04.10.2023; Views: 2285; Downloads: 8 Full text (5,81 MB) This document has many files! More... |
16. FOV direction and image size calibration of Fluorescence Detector using light source on UAVA. Nakazawa, Jon Paul Lundquist, 2022, published scientific conference contribution Abstract: In the Telescope Array (TA) experiment, we have been observing cosmic rays using a Fluorescence Detector (FD). More than 10 years have passed since we started this observation, and the accuracy of the observation has become more important than ever. We have developed the "Opt-copter" as a calibration device for the FDs. The Opt-copter is an unmanned aerial vehicle (UAV) equipped with a light source and can fly freely within the FD's field of view (FOV). In addition, the Opt-copter is equipped with a high-precision RTK-GPS, which enables it to accurately determine the position of the light source in flight. With this device, we can obtain detailed information on the optical characteristics of the FD. So far, we have reported on the configuration of the device and the analysis of the FOV direction. In this presentation, we will report on the new FOV analysis and image size analysis. Keywords: Telescope Array, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, light source, calibration, UAV, FOV Published in RUNG: 04.10.2023; Views: 2429; Downloads: 8 Full text (7,14 MB) This document has many files! More... |
17. Monte Carlo simulations for the Pierre Auger Observatory using the VO auger grid resourcesE. Santos, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: The Pierre Auger Observatory, located near Malargüe, Argentina, is the world’s largest cosmic-ray detector. It comprises a 3000 km^2 surface detector and 27 fluorescence telescopes, which measure the lateral and longitudinal distributions of the many millions of air-shower particles produced in the interactions initiated by a cosmic ray in the Earth’s atmosphere. The determination of the nature of cosmic rays and studies of the detector performances rely on extensive Monte Carlo simulations describing the physics processes occurring in extensive air showers and the detector responses.
The aim of the Monte Carlo simulations task is to produce and provide the Auger Collaboration with reference libraries used in a wide variety of analyses. All multipurpose detector simulations are currently produced in local clusters using Slurm and HTCondor. The bulk of the shower simulations are produced on the grid, via the Virtual Organization auger, using the DIRAC
middleware. The job submission is made via python scripts using the DIRAC-API.
The Auger site is undergoing a major upgrade, which includes the installation of new types of detectors, demanding increased simulation resources. The novel detection of the radio component of extensive air showers is the most challenging endeavor, requiring dedicated shower simulations with very long computation times, not optimized for the grid production.
For data redundancy, the simulations are stored on the Lyon server and the grid Disk Pool Manager and are accessible to the Auger members via iRODS and DIRAC, respectively. The CERN VMFile System is used for software distribution where, soon, the Auger Offline software will also be made available. Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, surface detection, radio detection, ultra-high energy, cosmic rays, Monte Carlo simulation, computing resources, compute clusters, high capacity storage Published in RUNG: 04.10.2023; Views: 2044; Downloads: 8 Full text (1,54 MB) This document has many files! More... |
18. Satellite Data for Atmospheric Monitoring at the Pierre Auger ObservatoryA. Puyleart, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: Atmospheric monitoring over the 3000 km^2 of the Pierre Auger Observatory can be supplemented by satellite data. Methods for night-time cloud detection and aerosol cross-checking were created using the GOES-16 and Aeolus satellites, respectively. The geostationary GOES-16 satellite provides a 100% up-time view of the cloud cover over the observatory. GOES-13 was used until the end of 2017 for cloud monitoring, but with its retirement a method based on GOES-16 data was developed. The GOES-16 cloud detection method matches the observatory’s vertical laser cloud detection method at a rate of ∼90%. The Aeolus satellite crosses the Pierre Auger Observatory several times throughout the year firing UV-laser shots. The laser beams leave a track of scattered light in the atmosphere that can be observed by the light sensors of the observatory fluorescence telescopes. Using a parametric model of the aerosol concentration, the laser shots can be reconstructed with different combinations of the aerosol parameters. A minimization procedure then yields the parameter set that best describes the aerosol attenuation. Furthermore, the possibility of studying horizontal homogeneity of aerosols across the array is being investigated. Keywords: Pierre Auger Observatory, indirect detection, fluorescence detection, ultra-high energy, cosmic rays, atmospheric monitoring, satellite monitoring, cloud detection, aerosols, UV laser shots Published in RUNG: 04.10.2023; Views: 1935; Downloads: 7 Full text (2,92 MB) This document has many files! More... |
19. Operations of the Pierre Auger ObservatoryR. Caruso, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: The construction of the first stage of the Pierre Auger Observatory, designed for research of ultra-high energy cosmic rays, began in 2001 with a prototype system. The Observatory has been collecting data since early 2004 and was completed in 2008. The Observatory is situated at 1400 m above sea level near Malargüe, (Mendoza province) in western Argentina, covering a vast plain of 3000 squared km, known as the Pampa Amarillo. The Observatory consists of a hybrid detector, in which there are 1660 water-Cherenkov stations, forming the Surface Detector (SD) and 27 peripheral atmospheric fluorescence telescopes, comprising the Fluorescence Detector (FD). Over time, the Auger Observatory has been enhanced with different R&D prototypes and is recently being to an important upgrade called AugerPrime. In the present contribution, the general operations of the SD and FD will be described. In particular the FD shift procedure - executable locally in Malargüe or remotely by teams in control rooms abroad within the Collaboration - and the newly SD shifts (operating since 2019) will be explained. Additionally, the SD and FD maintenance campaigns, as well as the data taking and data handling at a basic level, will be reported Keywords: Pierre Auger Observatory, AugerPrime, indirect detection, fluorescence detectors, surface detectors, ultra-high energy, cosmic rays, detector operation Published in RUNG: 04.10.2023; Views: 2177; Downloads: 5 Full text (6,83 MB) This document has many files! More... |
20. Update of the Offline Framework for AugerPrimeL. Nellen, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: Work on the Offline Framework for the Pierre Auger Observatory was
started in 2003 to create a universal framework for event
reconstruction and simulation. The development and installation of
the AugerPrime upgrade of the Pierre Auger Observatory require an
update of the Offline Framework to handle the additional detector
components and the upgraded Surface Detector Electronics.
The design of the Offline Framework proved to be sufficiently
flexible to accommodate the changes needed to be able to handle the
AugerPrime detector. This flexibility has been a goal since the
development of the code started. The framework separates data
structures from processing modules. The detector components map
directly onto data structures. It was straightforward to update or
add processing modules to handle the additional information from
the new detectors.
We will discuss the general structure of the Offline Framework,
explaining the design decisions that provided its flexibility and
point out the few of the features of the original design that
required deeper changes, which could have been avoided in
hindsight. Given the disruptive nature of the AugerPrime upgrade,
the developers decided that the update for AugerPrime was the moment
to change also the language standard for the implementation and move
to the latest version of C++, to break strict backward compatibility
eliminating deprecated interfaces, and to modernize the development
infrastructure. We will discuss the changes that were made to the
structure in general and the modules that were added to the
framework to handle the new detector components. Keywords: Pierre Auger Observatory, AugerPrime, indirect detection, surface detection, ground array, fluorescence detection, ultra-high energy, cosmic rays, event reconstruction, simulation, software framework Published in RUNG: 04.10.2023; Views: 2230; Downloads: 6 Full text (1,12 MB) This document has many files! More... |