Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 30
First pagePrevious page123Next pageLast page
1.
UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies
A. di Matteo, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution

Abstract: The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%+5.0%−3.1% of cosmic rays detected with E≥38 EeV by Auger or with E≳49 EeV by TA and the position of nearby starburst galaxies on a 15.5∘+5.3∘−3.2∘ angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution.
Keywords: Pierre Auger Observatory, Telescope Array, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, anisotropy, full-sky, starburst galaxies, source correlations, dipole
Published in RUNG: 04.10.2023; Views: 255; Downloads: 4
.pdf Full text (2,53 MB)
This document has many files! More...

2.
Effects of Galactic magnetic field on the UHECR anisotropy studies
R. Higuchi, Jon Paul Lundquist, 2022, published scientific conference contribution

Abstract: Telescope Array (TA) and Auger experiments reported anisotropies in the arrival direction of ultrahigh-energy cosmic rays (UHECRs). In particular, Auger Collaboration reported a correlation between UHECR events and the flux model of assumed sources and suggested a contribution of starburst galaxies (SBGs) to the anisotropy of UHECRs. However, in their study, the effect of coherent deflections by the galactic magnetic field (GMF) is not taken into account. In this study, we investigated the effect of the GMF on the arrival directions of UHECRs using the cosmic ray propagation code CRPropa3. We used a backtracking technique which consists of propagating antiparticles to map the flux outside the galaxy to at the earth. We estimate the systematic effects caused by GMF in the reported likelihood analysis. We conduct likelihood analysis for mock UHECR datasets based on the flux pattern through the GMF model. We found systematic decrease of (f_ani, �) due to GMF. As prospects for the TAx4 experiment and joint analysis of Auger and TA collaborations, we develop the likelihood analysis method with the convolution of the rigidity spectrum.
Keywords: Telescope Array, TAx4, ultra-high energy, cosmic rays, anisotropy, galactic magnetic field, starburst galaxies
Published in RUNG: 29.09.2023; Views: 271; Downloads: 5
.pdf Full text (1,97 MB)
This document has many files! More...

3.
Dark matter searches in dwarf spheroidal galaxies with the Cherenkov Telescope Array
Francesco Gabriele Saturni, Saptashwa Bhattacharyya, Judit PÉREZ ROMERO, Samo Stanič, Veronika VODEB, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: Dark matter (DM) is one of the major components in the Universe. However, at present its existence is still only inferred through indirect astronomical observations. DM particles can annihilate or decay, producing final-state Standard Model pairs that subsequently annihilate into high-energy �-rays. The dwarf spheroidal galaxies (dSphs) in the Milky Way DM halo have long been considered optimal targets to search for annihilating DM signatures in GeV-to-TeV �-ray spectra due to their high DM densities (hence high astrophysical factors), as well as the expected absence of intrinsic �-ray emission of astrophysical origin. For such targets, it is important to compute the amount of DM in their halos in a consistent way to optimize the �-ray data analysis. Such estimates directly affect the observability of DM signals in dSphs, as well as the DM constraints that can be derived in case of null detection. In this contribution, we present the results on the sensitivity of the Cherenkov Telescope Array (CTA) for DM annihilation and decay searches using planned observations of the Milky Way dSphs. We select the most promising targets among all presently known dwarf satellites, providing new determinations of their expected DM signal. This study shows an improvement of approximately an order of magnitude in sensitivity compared to current searches in similar targets. We also discuss the results in terms of cuspy and cored DM models, and investigate the sensitivity obtained by the combination of observations from different dSphs. Finally, we explore the optimal strategies for CTA observations of dSphs.
Keywords: Cherenkov Telescope Array, CTA, Dark matter, Standard Model, dwarf spheroidal galaxies
Published in RUNG: 26.09.2023; Views: 265; Downloads: 4
.pdf Full text (4,11 MB)
This document has many files! More...

4.
Low-luminosity jetted AGN as particle multi-messenger sources
Anita Reimer, Margot Boughelilba, Lukas Merten, Paolo Da Vela, Jon Paul Lundquist, Serguei Vorobiov, 2023, published scientific conference contribution abstract

Abstract: The detection of cosmic gamma rays, high-energy neutrinos and cosmic rays (CRs) signal the existence of environments in the Universe that allow particle acceleration to extremely high energies. These observable signatures from putative CR sources are the result of in-source acceleration of particles, their energy and time-dependent transport including interactions in an evolving environment and their escape from source, in addition to source-to-Earth propagation. Low-luminosity AGN jets constitute the most abundant persistent jet source population in the local Universe. The dominant subset of these, Fanaroff-Riley 0 (FR0) galaxies, have recently been proposed as sources contributing to the ultra-high-energy cosmic ray (UHECR) flux observed on Earth. This presentation assesses the survival, workings and multi-messenger signatures of UHECRs in low-luminosity jet environments, with focus on FR0 galaxies. For this purpose we use our recently developed, fully time-dependent CR particle and photon propagation framework which takes into account all relevant secondary production and energy loss processes, allows for an evolving source environment and efficient treatment of transport non-linearities due to the produced particles/photons being fed back into the simulation chain. Finally, we propagate UHE cosmic-ray nuclei and secondary cosmogenic photons and neutrinos from FR0 galaxies to Earth for several extragalactic magnetic field scenarios using the CRPropa3 framework, and confront the resulting energy spectra and composition on Earth with the current observational situation.
Keywords: multi-messenger astrophysics, ultra-high-energy cosmic rays (UHECRs), very-high-energy gamma-rays, very-high-energy neutrinos, active galactic nuclei (AGN), low-luminosity jetted AGN, Fanaroff-Riley 0 (FR0) galaxies, UHECR acceleration, UHECR propagation, cosmic magnetic fields
Published in RUNG: 13.09.2023; Views: 305; Downloads: 4
URL Link to file
This document has many files! More...

5.
The UHECR-FR0 Radio Galaxy Connection: A Multi-Messenger Study of Energy Spectra/Composition Emission and Intergalactic Magnetic Field Propagation
Jon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution

Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence in the local universe compared to more powerful radio galaxies (about five times more than FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations include the approximately isotropic distribution of FR0 galaxies and various intergalactic magnetic field configurations (including random and structured fields) and predict the fluxes of secondary photons and neutrinos produced during UHECR propagation through cosmic photon backgrounds. This comprehensive simulation allows for investigating the properties of the FR0 sources using observational multi-messenger data.
Keywords: ultra-high energy cosmic rays (UHECRs), UHECR propagation, CRPropa, active galactic nuclei (AGN), jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum, UHECR mass composition
Published in RUNG: 24.08.2023; Views: 325; Downloads: 4
.pdf Full text (1,12 MB)
This document has many files! More...

6.
Strong lensing as a tool to study the early universe : written report
Brankica Apostolova, 2023, research project (high school)

Keywords: strong lensing, astrophysics, Roman Space Telescope, galaxy clustersv, galaxies
Published in RUNG: 23.08.2023; Views: 298; Downloads: 0
This document has many files! More...

7.
8.
Classification of gamma-ray targets for velocity-dependent and subhalo-boosted dark-matter annihilation
Thomas Lacroix, Gaetán Facchinetti, Judit Pérez-Romero, Martin Stref, Julien Lavalle, David Maurin, Miguel Sánchez-Conde, original scientific article

Abstract: Gamma-ray observations have long been used to constrain the properties of dark matter (DM), with a strong focus on weakly interacting massive particles annihilating through velocity-independent processes. However, in the absence of clear-cut observational evidence for the simplest candidates, the interest of the community in more complex DM scenarios involving a velocity-dependent cross-section has been growing steadily over the past few years. We present the first systematic study of velocity-dependent DM annihilation (in particular p-wave annihilation and Sommerfeld enhancement) in a variety of astrophysical objects, not only including the well-studied Milky Way dwarf satellite galaxies, but nearby dwarf irregular galaxies and local galaxy clusters as well. Particular attention is given to the interplay between velocity dependence and DM halo substructure. Uncertainties related to halo mass, phase-space and substructure modelling are also discussed in this velocity-dependent context. We show that, for s-wave annihilation, extremely large subhalo boost factors are to be expected, up to 10^11 in clusters and up to 10^6–10^7 in dwarf galaxies where subhalos are usually assumed not to play an important role. Boost factors for p-wave annihilation are smaller but can still reach 10^3 in clusters. The angular extension of the DM signal is also significantly impacted, with e.g. the cluster typical emission radius increasing by a factor of order 10 in the s-wave case. We also compute the signal contrast of the objects in our sample with respect to annihilation happening in the Milky Way halo. Overall, we find that the hierarchy between the brightest considered targets depends on the specific details of the assumed particle-physics model.
Keywords: dark matter theory, dwarf galaxies, galaxy clusters, gamma-ray theory
Published in RUNG: 27.01.2023; Views: 755; Downloads: 0
This document has many files! More...

9.
Dark matter search in dwarf irregular galaxies with the Fermi Large Area Telescope
Viviana Gammaldi, Judit Pérez-Romero, Javier Coronado-Blázquez, Mattia di Mauro, Ekaterina Karukes, Miguel Sánchez-Conde, Paolo Salucci, 2021, original scientific article

Abstract: We analyze 11 years of Fermi-Large Area Telescope (LAT) data corresponding to the sky regions of seven dwarf irregular (dIrr) galaxies. DIrrs are dark matter (DM)-dominated systems, proposed as interesting targets for the indirect search of DM with gamma rays. The galaxies represent interesting cases with a strong disagreement between the density profiles (core versus cusp) inferred from observations and numerical simulations. In this work, we addressed the problem by considering two different DM profiles, based on both the fit to the rotation curve (in this case, a Burkert cored profile) and results from N-body cosmological simulations (i.e., Navarro-Frenk-White cuspy profile). We also include halo substructure in our analysis, which is expected to boost the DM signal by a factor of 10 in halos such as those of dIrrs. For each DM model and dIrr, we create a spatial template of the expected DM-induced gamma-ray signal to be used in the analysis of Fermi-LAT data. No significant emission is detected from any of the targets in our sample. Thus, we compute upper limits on the DM annihilation cross section versus mass parameter space. Among the seven dIrrs, we find IC10 and NGC6822 to yield the most stringent individual constraints, independently of the adopted DM profile. We also produce combined DM limits for all objects in the sample, which turn out to be dominated by IC10 for all DM models and annihilation channels, i.e., b¯b, τ+τ−, and W+W−. The strongest constraints are obtained for b¯b and are at the level of <σv>∼7×10−26 cm3 s−1 at mχ ∼ 6 GeV. Though these limits are a factor of ∼3 higher than the thermal relic cross section at low weakly interacting massive particles masses, they are independent from and complementary to those obtained by means of other targets.
Keywords: Dark matter, gamma-ray astronomy, galaxies, astronomical masses and mass distributions
Published in RUNG: 26.01.2023; Views: 631; Downloads: 0
This document has many files! More...

10.
Search done in 0.06 sec.
Back to top