Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


11 - 14 / 14
First pagePrevious page12Next pageLast page
11.
Evidence of Intermediate-scale Energy Spectrum Anisotropy of Cosmic Rays E ≥ 10^19.2 eV with the Telescope Array Surface Detector
R.U. Abbasi, Jon Paul Lundquist, 2018, original scientific article

Abstract: Evidence for an intermediate-scale energy spectrum anisotropy has been found in the arrival directions of ultra-high energy cosmic rays for energies greater than 10^19.2 eV in the northern hemisphere using 7 years of Telescope Array surface detector data. A relative energy distribution test is done comparing events inside oversampled spherical caps of equal exposure, to those outside, using the Poisson likelihood ratio. The center of maximum significance is at 9h16m, 45°, and has a deficit of events with energies 10^19.2 ≤ E < 10^19.75 eV and an excess for E ≥ 10^19.75 eV. The post-trial probability of this energy anisotropy, appearing by chance anywhere on an isotropic sky, is found by Monte Carlo simulation to be 9 × 10−5 (3.74σ global).
Keywords: astroparticle physics, cosmic rays, anisotropy, large-scale structure of universe
Published in RUNG: 24.04.2020; Views: 4376; Downloads: 204
.pdf Full text (1,43 MB)

12.
Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment
R.U. Abbasi, Jon Paul Lundquist, 2014, original scientific article

Abstract: We have searched for intermediate-scale anisotropy in the arrival directions of ultrahigh-energy cosmic rays with energies above 57 EeV in the northern sky using data collected over a 5 year period by the surface detector of the Telescope Array experiment. We report on a cluster of events that we call the hotspot, found by oversampling using 20∘-radius circles. The hotspot has a Li-Ma statistical significance of 5.1σ, and is centered at R.A.=146.7∘, Dec.=43.2∘. The position of the hotspot is about 19∘ off of the supergalactic plane. The probability of a cluster of events of 5.1σ significance, appearing by chance in an isotropic cosmic-ray sky, is estimated to be 3.7×10−4 (3.4σ).
Keywords: acceleration of particles, cosmic rays, large-scale structure of universe, surveys
Published in RUNG: 24.04.2020; Views: 4457; Downloads: 0
This document has many files! More...

13.
Large-Scale Distribution of Arrival Directions of Cosmic Rays Detected at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV
Olivier Deligny, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The large-scale distribution of arrival directions of high-energy cosmic rays is a key observable in attempts to understanding their origin. The dipole and quadrupole moments are of special interest in revealing potential anisotropies. An unambiguous measurement of these moments as well as of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Pierre Auger Observatory and the Telescope Array above 10[sup]19 eV has been performed. Thanks to the full-sky coverage, the measurement of the dipole moment reported in this study does not rely on any assumption on the underlying flux of cosmic rays. As well, the resolution on the quadrupole and higher order moments is the best ever obtained. The resulting multipolar expansion of the flux of cosmic rays allows a series of anisotropy searches to be performed, and in particular to report on the first angular power spectrum of cosmic rays. This allows a comprehensive description of the angular distribution of cosmic rays above 10[sup]19 eV.
Keywords: Pierre Auger Observatory, Telescope Array, high-energy cosmic rays, large-scale anisotropies, angular power spectrum
Published in RUNG: 08.03.2016; Views: 5933; Downloads: 193
.pdf Full text (462,61 KB)

14.
Indications of anisotropy at large angular scales in the arrival directions of cosmic rays detected at the Pierre Auger Observatory
Imen Al Samarai, Andrej Filipčič, Gašper Kukec Mezek, Ahmed Saleh, Samo Stanič, Marta Trini, Darko Veberič, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution

Abstract: The large-scale distribution of arrival directions of high-energy cosmic rays carries major clues to understanding their origin. The Pierre Auger Collaboration have implemented different analyses to search for dipolar and quadrupolar anisotropies in different energy ranges spanning four orders of magnitude. A common phase ≈270◦ of the first harmonic modulation in right-ascension was found in adjacent energy intervals below 1 EeV, and another common phase ≈100◦ above 4 EeV. A constancy of phase measurements in ordered energy intervals originating from a genuine anisotropy is expected to appear with a smaller number of events than those needed to achieve significant amplitudes. This led us to design a prescribed test aimed at establishing whether this consistency in phases is real at 99% CL. The test required a total independent exposure of 21,000 km2 sr yr. We report on the status of this prescription. We also report the results of the search for a dipole anisotropy for cosmic rays with energies above 4 EeV using events with zenith angles between 60◦ and 80◦. Compared to previous analyses of events with zenith angles smaller than 60◦, this extension increases the size of the data set by 30%, and enlarges the fraction of exposed sky from 71% to 85%. The largest departure from isotropy is found in the energy range above 8 EeV, with an amplitude for the first harmonic in right ascension r1 = (4.4 ± 1.0) × 10[sup]−2, that has a chance probability P(≥ r1) = 6.4×10[sup]−5, reinforcing the hint previously reported with vertical events alone.
Keywords: high-energy cosmic rays large-scale distribution anisotropy studies Pierre Auger Observatory
Published in RUNG: 02.03.2016; Views: 6624; Downloads: 243
.pdf Full text (862,90 KB)

Search done in 0.02 sec.
Back to top