Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 7 / 7
First pagePrevious page1Next pageLast page
1.
The Cherenkov Telescope Array. Science Goals and Current Status
Rene A. Ong, Christopher Eckner, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution (invited lecture)

Abstract: The Cherenkov Telescope Array (CTA) is the major ground-based gamma-ray observatory planned for the next decade and beyond. Consisting of two large atmospheric Cherenkov telescope arrays (one in the southern hemisphere and one in the northern hemisphere), CTA will have superior angular resolution, a much wider energy range, and approximately an order of magnitude improvement in sensitivity, as compared to existing instruments. The CTA science programme will be rich and diverse, covering cosmic particle acceleration, the astrophysics of extreme environments, and physics frontiers beyond the Standard Model. This paper outlines the science goals for CTA and covers the current status of the project.
Keywords: very-high-energy gamma-ray astronomy, Cherenkov Telescope Array (CTA), cosmic particle acceleration, astrophysics of extreme environments, physics beyond the Standard Model
Published in RUNG: 11.10.2023; Views: 570; Downloads: 7
.pdf Full text (3,28 MB)
This document has many files! More...

2.
Ultra-fast silicon detectors for CERN’S high-luminosity large hadron collider : written report
Adrián González Briones, 2022, research project (high school)

Keywords: standard silicon detectors, ionized particles, hadrontherapy, particle physics
Published in RUNG: 15.06.2022; Views: 1346; Downloads: 0
This document has many files! More...

3.
Study of muons from ultrahigh energy cosmic ray air showers measured with the Telescope Array experiment
R.U. Abbasi, Jon Paul Lundquist, 2018, original scientific article

Abstract: One of the uncertainties in the interpretation of ultrahigh energy cosmic ray data comes from the hadronic interaction models used for air shower Monte Carlo (MC) simulations. The number of muons observed at the ground from ultrahigh energy cosmic ray–induced air showers is expected to depend upon the hadronic interaction model. One may therefore test the hadronic interaction models by comparing the measured number of muons with the MC prediction. In this paper, we present the results of studies of muon densities in ultrahigh energy extensive air showers obtained by analyzing the signal of surface detector stations which should have high muon purity. The muon purity of a station will depend on both the inclination of the shower and the relative position of the station. In seven years’ data from the Telescope Array experiment, we find that the number of particles observed for signals with an expected muon purity of ∼65% at a lateral distance of 2000 m from the shower core is 1.72± 0.10(stat)±0.37(syst) times larger than the MC prediction value using the QGSJET II-03 model for proton-induced showers. A similar effect is also seen in comparisons with other hadronic models such as QGSJET II-04, which shows a 1.67±0.10±0.36 excess. We also studied the dependence of these excesses on lateral distances and found a slower decrease of the lateral distribution of muons in the data as compared to the MC, causing larger discrepancy at larger lateral distances.
Keywords: UHECR, cosmic rays, muons, particle physics
Published in RUNG: 30.04.2020; Views: 2448; Downloads: 0
This document has many files! More...

4.
Energy response of ISS-CREAM calorimeter with attenuation effect
H.G. Zhang, Jon Paul Lundquist, 2020, other component parts

Abstract: The NASA mission, Cosmic Ray Energetic And Mass experiment for the International Space Station (ISS-CREAM) is to measure individual cosmic-ray particle energy spectra from protons to iron nuclei, with an energy range from ~1 TeV to the so-called "knee", near 1015eV. Energies of cosmic-ray particles are measured from electromagnetic showers induced by particles in the calorimeter. As a pioneer mission, the balloon-borne CREAM instrument has successfully flown seven times over the Antarctica for a cumulative exposure of 191 days. The CREAM calorimeter has shown sufficient capability to measure energies of cosmic-ray particles by capturing the electromagnetic shower profile within the interested energy range. The ISS-CREAM calorimeter is expected to have a similar performance and, before it was launched, an engineering-unit calorimeter was shipped to CERN for a full beam test. The full performance test includes position, energy, and angle scans of electron and pion beams together with a high voltage scan for calibration and characterization. In addition to the regular analysis for performance test, we also applied an additional step to generate the universal energy responses by correcting the attenuation effect in the calorimeter readout. The general energy responses could be obtained after shifting the incident beam positions to a reference position near the center of the calorimeter, which provided improved energy resolutions. The result of this analysis will be used to determine the incident energies of the cosmic-ray particles in the flight data.
Keywords: cosmic rays, high-energy, particle physics, detectors
Published in RUNG: 29.04.2020; Views: 3041; Downloads: 162
.pdf Full text (2,54 MB)

5.
6.
Search for Physics beyond the Standard Model with the CRESST Experiment
2017, master's thesis

Abstract: In spite of the successes of observational astro- and particle physics and cosmology very much of the universe remains unknown. The Standard Model of particle physics is a theory describing the electromagnetic, weak, and strong nuclear interactions, as well as classifying all the subatomic particles known. But there is overwhelming evidence, that all the known particles, the ordinary (baryonic) matter, the building blocks of planets, stars and ourselves, only make up about 4.9% of the energy content of the universe. The standard model of cosmology (CDM) indicates that the total mass-energy of the universe contains beside the 4.9% ordinary matter two other components: 26.8% dark matter and 68.3% dark energy. The accelerating expansion of the Universe is the result of the effect of the dark energy with its most simple form given by a cosmological constant in Einstein's Equation. Dark matter is an unidentified type of matter that is not accounted for by dark energy and neutrinos and is generally believed to be a non-relativistic, charge neutral and non-baryonic new form of matter. Although dark matter has not been directly observed yet, its existence and properties are inferred from its gravitational effects such as the motions of visible matter, gravitational lensing, its influence on the universe's large-scale structure, and its effects in the cosmic microwave background. Thus the search for Dark Matter is the search for physics beyond the standard model. Although the nature of dark matter is yet unknown, its presence is crucial to understanding the future of the universe. The CRESST experiment is searching for direct evidence in the form of a nuclear recoil induced on a scintillating CaWO4 crystal by a dark matter particle, and is installed and taking data underground at Laboratory Nazionali del Gran Sasso (LNGS) in Italy. While both, dark energy and dark matter, have not been detected directly, a class of dark matter particles that interact only via gravity and the weak force, referred to asWeakly Interacting Massive Particles (WIMPs), has been established as the leading candidate among the dark matter community. For this thesis a special model of dark matter was studied, namely the dark photon. This thesis provides a detailed description of the calculation of the 90% upper limit on the dark photon kinetic mixing based on data from the second phase of the CRESST experiment. The analysis was carried out in a frequentist approach based on the (unbinned) maximum-likelihood method and likelihood ratios. To make a statement about the calculated result and its quality, the used algorithm had to be tested, what was done with Monte Carlo simulations (pseudo data).
Keywords: astro physics, particle physics, cosmology, universe, Standard Model of particle physics, standard model of cosmology, matter, ordinary matter, dark matter, dark energy, accelerating expansion of the Universe, non-baryonic, new form of matter, gravitational lensing, cosmic microwave background, search for physics beyond the standard model, CRESST experiment, direct detection, CaWO4 crystal, underground laboratory, Laboratory Nazionali del Gran Sasso, Weakly Interacting Massive Particles, WIMP, dark photon, 90% upper limit, upper limit, kinetic mixing, frequentist approach, unbinned, maximum likelihood
Published in RUNG: 13.10.2017; Views: 4500; Downloads: 0
This document has many files! More...

7.
Search done in 0.05 sec.
Back to top