Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 23
First pagePrevious page123Next pageLast page
1.
2.
3.
4.
5.
6.
7.
8.
9.
Thermal diffusivity downscaling of molybdenum oxide thin film through annealing temperature-induced nano-lamelle formation: a photothermal beam deflection study
S. Soumya, Vimal Raj, Mohanachandran Nair Sindhu Swapna, Sankaranarayana Iyer Sankararaman, 2021, original scientific article

Abstract: The present work proposes a method of downscaling the thermal diffusivity (α) of MoO3 thin films through annealing temperature-induced nano-lamelle formation. The thermal diffusivity modification of the MoO3 films, prepared by the doctor blade method, is investigated by the sensitive transverse photothermal beam deflection technique. The X-ray diffraction analysis confirms the structural phase transformation from monoclinic to orthorhombic in the films annealed from 300 to 450 °C. The thermal induced anisotropy of the film is evident from the variation of the morphology index and texture coefficient. The field emission scanning electron microscopic analysis unveils the morphology modifications from blocks to the nano-lamelle structure with layers of average thickness ~ 77 nm. The thermal diffusivity measurement reveals a 53% reduction upon annealing the film to 450 °C. The drastic reduction is achieved through the annealing temperature-induced nano-lamelle formation and the phase transformation from monoclinic to orthorhombic in the MoO3 films.
Keywords: thermal diffusivity, molybdenum oxide, thin film, nano-lamelle, photothermal beam deflection
Published in RUNG: 04.07.2022; Views: 1097; Downloads: 26
URL Link to full text
This document has many files! More...

10.
Thermal diffusivity of molybdenum oxide nanowire film: a photothermal beam deflection study
Mohanachandran Nair Sindhu Swapna, 2021, original scientific article

Abstract: The paper reports the preparation of thin film with MoO3 nanowires (NWs) by the doctor blade method and the study of its thermal diffusivity (α) by the sensitive photothermal beam deflection (PTD) method. When the Field Emission Scanning Electron Microscopic and Atomic Force Microscopic analysis unveil its morphology as NW bundles, the X-ray diffraction analysis reveals the structure to be orthorhombic. The NWs formed are of diameter ~ 20 nm and length up to 5 μm. The standardization of the transverse PTD setup is done by determining the value of α of iron, which agrees well with literature reports. The thermal diffusivity of MoO3 NW film is obtained as 0.0036 cm2 /s, which is 9.48% of its bulk counterpart. The reduction in the thermal diffusivity of NW makes it a suitable candidate for thermoelectric applications.
Keywords: Nanowires Molybdenum oxide Photothermal beam deflection Thermal diffusivity
Published in RUNG: 04.07.2022; Views: 1149; Downloads: 0
This document has many files! More...

Search done in 0.06 sec.
Back to top