Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 8 / 8
First pagePrevious page1Next pageLast page
1.
Reducing carbon footprint by changing energy systems
Drago Papler, Marijan Pogačnik, 2022, published scientific conference contribution abstract

Keywords: energy efficiency, renewable energy barriers, energy efficiency, carbon footprint, economics
Published in RUNG: 08.01.2024; Views: 472; Downloads: 3
.pdf Full text (14,88 MB)
This document has many files! More...

2.
The conflict between economy and ecology of productive energy sources : Elektronski vir
Drago Papler, 2021, short scientific article

Keywords: economy, ecology, energy, circular flow, renewable energy
Published in RUNG: 11.04.2023; Views: 776; Downloads: 8
URL Link to full text
This document has many files! More...

3.
REGIONAL POTENTIAL FOR SUSTAINABLE ENERGY SUPPLY IN CROATIA : MASTER'S THESIS
Stefan Subotić, master's thesis

Abstract: The master thesis aims to find the optimal model for a new energy company that considers regional potential, supports sustainable development, and fits the circular economy concept in a region. The idea of sustainable development is crucial today when we have more city areas and less countryside around the globe. Increased global population, industrial trends and modern living style are some of the reasons why the burden on our environment is more significant than ever in the history of humanity. The idea is to launch the new company in the Croatian region Osijek-Baranja, which is less developed and not attractive to tourists. A newly established company will produce electric energy from renewable energy sources. The multi-criterion decision support methods were used to determine the optimal energy source between wind, biogas and sun. Results show that the biogas has the most significant sustainable potential in chosen boundary conditions. The cash flows and other economic indicators are shown for a farm of 500 milking cows in the chosen region as a source of biogas. The risk assessments method estimated the boundaries of the company success and adaptability to possible changes. One of the critical aspects of the project is the company's organizational structure, where a vertical hierarchy with a flexible and fluid, circular organization model with network culture was proposed. Clear communication about the project will help establish trust with the local community. Based on the biogas plant, the proposed company reduces biodegradable waste in the green energy production process. It is shown quantitatively that besides being economically sustainable, it also suits the region's potential, supports energy self-supply, and involves local people - it aims to the long-term sustainable growth of the region, rather than short-term capital growth.
Keywords: Circular economy, sustainable development, regional potential, renewable energy sources, company structure, communication
Published in RUNG: 18.02.2022; Views: 2385; Downloads: 64
.pdf Full text (2,75 MB)

4.
Interface engineering of Ta[sub]3N[sub]5 thin film photoanode for highly efficient photoelectrochemical water splitting
Jie Fu, Zeyu Fan, Mamiko Nakabayashi, Huanxin Ju, Nadiia Pastukhova, Yequan Xiao, Chao Feng, Naoya Shibata, Kazunari Domen, Yanbo Li, 2022, original scientific article

Abstract: Interface engineering is a proven strategy to improve the efficiency of thin film semiconductor based solar energy conversion devices. Ta3N5 thin film photoanode is a promising candidate for photoelectrochemical (PEC) water splitting. Yet, a concerted effort to engineer both the bottom and top interfaces of Ta3N5 thin film photoanode is still lacking. Here, we employ n-type In:GaN and p-type Mg:GaN to modify the bottom and top interfaces of Ta3N5 thin film photoanode, respectively. The obtained In:GaN/Ta3N5/Mg:GaN heterojunction photoanode shows enhanced bulk carrier separation capability and better injection efficiency at photo- anode/electrolyte interface, which lead to a record-high applied bias photon-to-current efficiency of 3.46% for Ta3N5-based photoanode. Furthermore, the roles of the In:GaN and Mg:GaN layers are distinguished through mechanistic studies. While the In:GaN layer con- tributes mainly to the enhanced bulk charge separation efficiency, the Mg:GaN layer improves the surface charge inject efficiency. This work demonstrates the crucial role of proper interface engineering for thin film-based photoanode in achieving efficient PEC water splitting.
Keywords: photocatalysis, renewable energy
Published in RUNG: 09.02.2022; Views: 1676; Downloads: 73
URL Link to full text
This document has many files! More...

5.
Monetisation of the ecological footprint in energy supply of buildings
Henrik Gjerkeš, Marjana Šijanec-Zavrl, 2021, short scientific article

Abstract: The ecological footprint of modern life exceeds the biocapacity of our environment in Slovenia as well. With a simplified monetization of natural resources and waste, the economic and environmental advantages of renewables compared to fossil sources in the case of energy supply of buildings were illustrated. Experience with current energy market volatility and the extension of the EU-ETS are strong signals to accelerate the energy transition towards sustainable energy also in the building sector.
Keywords: energy supply, renewable energy sources, EU-ETS, buildings
Published in RUNG: 29.10.2021; Views: 1802; Downloads: 0
This document has many files! More...

6.
An economic analysis of biomass potential as an opportunity to increase the share of biogas production for energy purposes in Slovenia : master's thesis
Stefan Dabižljević, 2021, master's thesis

Abstract: One of the biggest global problems, the solution of being put in front of the scientists around the world, is endangering the environment. To preserve it, the transition from non-renewable to renewable energy sources is a rational and necessary solution. One of the energy sources with great potential in the future is biomass. In the master’s thesis, we have studied the economic analysis of the possibility of obtaining energy from biogas in Slovenia for the production of which biomass is used. For the study to be successful, it was necessary to analyse the situation in the field of renewable energy sources and biogas in the European Union and Slovenia to obtain a general picture for further analysis. By analysing the available data from previous years, we gained insight into the situation in the given area. The master’s thesis aims to show that although Slovenia has been facing the problem of a decreasing number of biogas power plants for years, the implementation of a system for obtaining energy from biogas is an economically and environmentally viable investment. The economic analysis was done for a 1 MW plant. The choice of plant size and power was made based on the Kepner-Tregoe method and the method of comparing alternatives. For the project duration of 30 years, through cash flows, as well as through various economic indicators, such as the presentation of loan calculations with a certain interest rate, internal rate of return, repayment period method, present project value, etc., the economic side of the investment is presented, which aims to show the profitability of the project.
Keywords: Renewable energy sources, biomass, biogas, economic analysis, investment, project
Published in RUNG: 07.09.2021; Views: 2193; Downloads: 95
URL Link to full text
This document has many files! More...

7.
Anaerobic treatment of excess yeast and waste ethanol from alcohol free beer production for increase of renewable energy use in brewing industry
Gregor Drago Zupančič, Mario Panjicko, Goran Lukić, 2020, published scientific conference contribution

Abstract: In the presented paper we have investigated how large quantities of excess yeast and periodical releases of waste ethanol influence the operation of the anaerobic treatment process in a UASB reactor. The process was tested in a pilot-scale reactor with a design organic load of 16.0 kg/m3/day of COD. Through various stages of the experiment, several possible scenarios were tested, excess yeast was added continuously with concentrations up to 3 vol. %, whereas waste ethanol was added in batches of up to 0.8 % of daily volume load several days a week. The intent was to test real conditions in the treatment process. The whole experiment lasted for 77 days, where the maximum organic load of 24.72 kg/m3/day was successfully achieved with no adverse effects on the efficiency of the reactor performance although it significantly surpassed the design load. The COD efficiency at maximum OLR was 83.1 %, whereas the average was 88.0 %. The average biogas production rate increased from 2,044 m3/m3/day to 4.927 m3/m3/day. The microbial community structure analysis showed significant shifts only in the archaeal community (25 – 30 %) as a good adaptation to the addition of substrates. Monitoring the model brewery in applying the addition of yeast and ethanol to the wastewater treatment showed a 110 % increase in biomethane production. The consequence of the increased biomethane production is that the natural gas substitute ratio could be increased from the current average of 10.7 % to potentially 20.1 %, which is a substantial step towards the goal of renewable energy use.
Keywords: anaerobic digestion, biogas, brewery yeast, renewable energy, waste ethanol
Published in RUNG: 10.06.2021; Views: 2440; Downloads: 11
URL Link to full text
This document has many files! More...

8.
Renewables in buildings and local communities : Buildings Energy Efficiency
Henrik Gjerkeš, invited lecture at foreign university

Keywords: Renewable energy sources, sustainable development, buildings, local communities
Published in RUNG: 03.12.2020; Views: 2149; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top