Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


1 - 10 / 17
First pagePrevious page12Next pageLast page
1.
The time evolution of the surface detector of the Pierre Auger Observatory
Orazio Zapparrata, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, published scientific conference contribution

Abstract: The surface detector array of the Pierre Auger Observatory, consisting of 1660 water Cherenkov tanks, has been in operation for nearly 20 years. During this long period of data acquisition, ageing effects in the detector response have been observed. The temporal evolution of the signals recorded by the surface detector is mostly compensated by continuous calibration with atmospheric muons; however, effects persist in the signal rise time and in high-level data analysis using neural networks. We have implemented a detailed description of the time evolution of the detector response and of the uptimes of individual stations in GEANT4-based detector simulations. These new simulations reproduce the observed time dependencies in the data. Using air-shower simulations that take into account the evolution of individual stations, we show that the reconstructed energy is stable at the sub-percent level, and its resolution is affected by less than 5% in 15 years. For a few specific stations, the collected light produced by muons has decreased to the point where it is difficult to distinguish it from the electromagnetic background in the calibration histograms. The upgrade of the Observatory with scintillator detectors mitigates this problem: by requiring a coincidence between the water-Cherenkov and scintillator detectors, we can enhance the muon relative contribution to the calibration histogram. We present the impact and performance of this coincidence calibration method.
Keywords: surface detector, Pierre Auger Observatory, neural networks, air-shower simulations
Published in RUNG: 22.01.2024; Views: 312; Downloads: 4
.pdf Full text (743,29 KB)
This document has many files! More...

2.
3.
Probing the folding of hen lyzozyme through molecular dynamics simulations
Bariş Kalfa, 2022, research project (high school)

Keywords: molecular dynamics simulations, proteins, folding process, unfolding process, hen egg-white lysozyme
Published in RUNG: 25.08.2022; Views: 1021; Downloads: 0
This document has many files! More...

4.
Testing the predictions of axisymmetric distribution functions of galactic dark matter with hydrodynamical simulations
Mihael Petač, Julien Lavalle, Arturo Núñez-Castiñeyra, Emmanuel Nezri, 2021, original scientific article

Abstract: Signal predictions for galactic dark matter (DM) searches often rely on assumptions regarding the DM phase-space distribution function (DF) in halos. This applies to both particle (e.g. p-wave suppressed or Sommerfeld-enhanced annihilation, scattering off atoms, etc.) and macroscopic DM candidates (e.g. microlensing of primordial black holes). As experiments and observations improve in precision, better assessing theoretical uncertainties becomes pressing in the prospect of deriving reliable constraints on DM candidates or trustworthy hints for detection. Most reliable predictions of DFs in halos are based on solving the steady-state collisionless Boltzmann equation (e.g. Eddington-like inversions, action-angle methods, etc.) consistently with observational constraints. One can do so starting from maximal symmetries and a minimal set of degrees of freedom, and then increasing complexity. Key issues are then whether adding complexity, which is computationally costy, improves predictions, and if so where to stop. Clues can be obtained by making predictions for zoomed-in hydrodynamical cosmological simulations in which one can access the true (coarse-grained) phase-space information. Here, we test an axisymmetric extension of the Eddington inversion to predict the full DM DF from its density profile and the total gravitational potential of the system. This permits to go beyond spherical symmetry, and is a priori well suited for spiral galaxies. We show that axisymmetry does not necessarily improve over spherical symmetry because the (observationally unconstrained) angular momentum of the DM halo is not generically aligned with the baryonic one. Theoretical errors are similar to those of the Eddington inversion though, at the 10-20% level for velocity-dependent predictions related to particle DM searches in spiral galaxies. We extensively describe the approach and comment on the results.
Keywords: galaxy dynamics, dark matter experiments, dark matter simulations, dark matter theory, cosmology, nongalactic astrophysics, astrophysics of galaxies, high energy physics
Published in RUNG: 01.10.2021; Views: 1896; Downloads: 64
URL Link to full text
This document has many files! More...

5.
6.
CALET’s sensitivity to Dark Matter annihilation in the galactic halo
Holger Motzka, Yoichi Asaoka, Shoji Torii, Saptashwa Bhattacharyya, 2015, original scientific article

Keywords: dark matter detectors, dark matter simulations, cosmic rays detectors
Published in RUNG: 06.01.2021; Views: 2100; Downloads: 0
This document has many files! More...

7.
Decaying fermionic dark matter search with CALET
Saptashwa Bhattacharyya, 2017, original scientific article

Keywords: cosmic rays detectors, dark matter detectors, dark matter simulations
Published in RUNG: 06.01.2021; Views: 2158; Downloads: 0
This document has many files! More...

8.
Studying TDEs in the era of LSST
Katja Bricman, Andreja Gomboc, 2019, published scientific conference contribution abstract

Keywords: The observing strategy with continuous scanning and large sky coverage of the upcoming ground-based Large Synoptic Survey Telescope (LSST) will make it a perfect tool in search of rare transients, such as Tidal Disruption Events (TDEs). Bright optical flares resulting from tidal disruption of stars by their host supermassive black hole (SMBH) can provide us with important information about the mass of the SMBH involved in the disruption and thus enable the study of quiescent SMBHs, which represent a large majority of SMBHs found in centres of galaxies. These types of transients are extremely rare, with only about few tens of candidates discovered so far. It is expected that the LSST will provide a large sample of new TDE light curves. Here we present simulations of TDE observations using an end-to-end LSST simulation framework. Based on the analysis of simulated light curves we estimate the number of TDEs with good quality light curves the LSST is expected to discover in 10 years of observations. In addition, we investigate whether TDEs observed by the LSST could be used to probe the SMBH mass distribution in the universe. The participation at this conference is supported by the Action CA16104 Gravitational waves, black holes and fundamental physics (GWverse), supported by COST (European Cooperation in Science and Technology).
Published in RUNG: 04.01.2021; Views: 2531; Downloads: 0

9.
Bora wind effects on common structures in the Vipava valley
Marija Bervida, 2020, doctoral dissertation

Abstract: Strong and gusty north-east wind called Bora is common in south-west regions of Slovenia, as well as along the Adriatic coast. Its intermittent behavior, related to variable strength, frequency and duration, has brought out scientific curiosity for decades. Bora affects human life and causes problems for structures built in Bora affected areas. In Slovenia, Bora is the strongest in the Vipava valley. The motivation for this research is the need to evaluate Bora wind effects on structures, commonly found in the Vipava valley region, using a high resolution computational fluid dynamics (CFD) modeling approach. To date, there are several experimental and computational constraints for accurate representation of Bora in a CFD model, therefore, the main aim of this dissertation is to build foundations for Bora wind simulations using CFD and its method of finite volumes. The dissertation incorporates the analysis of experimental measurements of Bora wind, as well as numerical modeling studies. Vertical mean wind speed profile characteristics of Bora were analyzed based on experimental measurements at Razdrto just above the Vipava valley. The obtained results contributed to the choice of Bora mean wind profiles applied at the inflow of computational models. Guidelines regarding the choice of the associated wind profile parameters were given and a new relationship between these parameters was found. As orographic barriers to the north of the Vipava valley are known to give rise to Bora and to define the specific properties of the Bora flow, numerical modeling studies were in the first place focused on the implementation of the real-scale complex terrain into a CFD model. Simulation of wind flow over orographic barrier in Vipava valley was performed using Raynolds averaged Navier-Stokes approach, providing a first estimation of the flow field over a small hill of Zemono. As resolving the turbulence characteristics of Bora is very important for the estimation of wind loads on structures, modeling studies converged towards a more appropriate approach - Large eddy simulations (LES). A crucial step in setting up an accurate LES is the generation of appropriate inflow, which was investigated for the case of atmospheric boundary layer (ABL) flow. The synthetic method PRFG^3 for the generation of unsteady inflow was tested and adapted as a source of an ABL flow with desired turbulence flow properties. Based on its performance, in particular on adequate reproduction of target turbulence intensities and length scales, it was found that PRFG^3 method may be used to generate velocity inflow with desired turbulence properties in LES. Finally, simulations of wind flow coming from Bora direction over the Vipava valley were performed with the aim to depict the effects of underlying orography on the flow within and above the valley. Modeling results were found to be comparable with the results of lidar based remote sensing of vertical atmospheric structures within and above the valley.
Keywords: Vipava valley, Bora wind, Wind profile, Orography, Atmospheric boundary layer, Computational fluid dynamics, Numerical simulations
Published in RUNG: 17.06.2020; Views: 5162; Downloads: 47
.pdf Full text (35,12 MB)

10.
Search done in 0.06 sec.
Back to top