1. |
2. Orbital selective dynamics in Fe-pnictides triggered by polarized pump pulse excitationsGanesh Adhikary, Tanusree Saha, Primož Rebernik Ribič, Matija Stupar, Barbara Ressel, Jurij Urbančič, Giovanni De Ninno, A. Thamizhavel, Kalobaran Maiti, 2021, original scientific article Abstract: Quantum materials display exotic behaviours related to the interplay between temperature-driven phase transitions. Here, we study the electron dynamics in one such material, CaFe$_2$As$_2$, a parent Fe-based superconductor, employing time and angle-resolved photoemission spectroscopy. CaFe$_2$As$_2$ exhibits concomitant transition to spin density wave state and tetragonal to orthorhombic structure below 170 K. The Fermi surface of this material consists of three hole pockets ($\alpha$, $\beta$ and $\gamma$) around $\Gamma$-point and two electron pockets around $X$-point. The hole pockets have $d_{xy}$, $d_{yz}$ and $d_{zx}$ orbital symmetries. The $\beta$ band constituted by $d_{xz}$/$d_{yz}$ orbitals exhibit a gap across the magnetic phase transition. We discover that polarized pump pulses can induce excitations of electrons of a selected symmetry. More specifically, while $s$-polarized light (polarization vector perpendicular to the $xz$-plane) excites electrons corresponding to all the three hole bands, $p$-polarized light excites electrons essentially from ($\alpha$,$\beta$) bands which are responsible for magnetic order. Interestingly, within the magnetically ordered phase, the excitation due to the $p$-polarized pump pulses occur at a time scale of 50 fs, which is significantly faster than the excitation induced by $s$-polarized light ($\sim$ 200 fs). These results suggest that the relaxation of different ordered phases occurs at different time scales and this method can be used to achieve selective excitations to disentangle complexity in the study of quantum materials. Keywords: Electronic structure, Pnictides and chalcogenides, Time-resolved spectroscopy Published in RUNG: 13.10.2021; Views: 2447; Downloads: 9 Full text (9,56 MB) |
3. Chemical and structural investigation of the cobalt phthalocyanineMatija Stupar, 2015, master's thesis Abstract: In the last two decades, studies on organic molecules mimicking substances of fundamental importance in nature, like chlorophyll or hemoglobin, have attracted researchers’ attention. These molecules are building blocks for a family of materials also referred to as “organic semiconductors”. Such compounds can be implemented in numerous applications, ranging from data-storage to light harvesting. Some of their fundamental advantages include low cost, light weight, relatively easy engineering and mechanical flexibility, compatible with bending plastic substrates.
In this thesis work we investigated the chemical, structural and electronic properties of cobalt phthalocyanines (CoPc). These molecules have promising applications in the field of magnetic data storage and spintronics in general, due to the ferromagnetic properties of the cobalt atom. Several techniques like photoemission core-level spectroscopy and valence band spectroscopy, together with X-ray absorption, have been used in order to determine the CoPc properties in gaseous phase, i.e. in the absence of interaction with the surrounding environment.
Another set of experiments was devoted to the commissioning of the CITIUS time-resolved photoemission setup, that will be used in future studies of CoPc molecules on surfaces. Keywords: Cobalt phthalocyanine (CoPc), photoemission spectroscopy (PES), X-ray absorption spectroscopy (XAS), synchrotron radiation, laser, high order harmonic generation (HHG), time resolved spectroscopy Published in RUNG: 29.09.2015; Views: 9591; Downloads: 285 Full text (2,96 MB) |
4. |