11. Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeVR. de Almeida, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: More than half a century after the discovery of ultra-high energy cosmic rays (UHECRs), their origin is still an open question. The study of anisotropies in the arrival directions of such particles is an essential ingredient to solve this puzzle. We update our previous analysis of large-scale anisotropies observed by the Pierre Auger Observatory using the latest data collected before the AugerPrime upgrade. We select events with zenith angles up to 80 degrees, implying a sky coverage of 85%, and energies above 4 EeV, for which the surface detector of the Observatory is fully efficient. Dipolar and quadrupolar amplitudes are evaluated through a combined Fourier analysis of the event count rate in right ascension and azimuth. The analysis is performed in three energy bins with boundaries at 4, 8, 16 and 32 EeV and two additional cumulative bins with energies above 8 and 32 EeV. The most significant signal is a dipolar modulation in right ascension for energies above 8 EeV, as previously reported, with statistical significance of 6.6σ. Additionally, we report the measurements of the angular power spectrum for the same energy bins with the same dataset. Keywords: Pierre Auger Observatory, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, anisotropy, dipole, quadropole, angular power spectrum, inclined showers Published in RUNG: 03.10.2023; Views: 1980; Downloads: 5
Full text (1,14 MB) This document has many files! More... |
12. Joint analysis of the energy spectrum of ultra-high-energy cosmic rays as measured at the Pierre Auger Observatory and the Telescope ArrayY. Tsunesada, Andrej Filipčič, Jon Paul Lundquist, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2022, published scientific conference contribution Abstract: The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([−15,+24] degrees in declination) can be used to cross-calibrate the two spectra.
The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration. Keywords: Telescope Array, Pierre Auger Observatory, indirect detection, surface detection, ground array, ultra-high energy, cosmic rays, energy spectrum, anisotropy, declination dependence, fully sky Published in RUNG: 02.10.2023; Views: 1672; Downloads: 7
Full text (1,02 MB) This document has many files! More... |
13. The UHECR-FR0 radio galaxy connection : a multi-messenger study of energy spectra/composition emission and intergalactic magnetic field propagationJon Paul Lundquist, Lukas Merten, Serguei Vorobiov, Margot Boughelilba, Anita Reimer, Paolo Da Vela, Fabrizio Tavecchio, Giacomo Bonnoli, Chiara Righi, 2023, published scientific conference contribution Abstract: This study investigates low luminosity Fanaroff-Riley Type 0 (FR0) radio galaxies as a potentially
significant source of ultra-high energy cosmic rays (UHECRs). Due to their much higher prevalence
in the local universe compared to more powerful radio galaxies (about five times more than
FR-1s), FR0s may provide a substantial fraction of the total UHECR energy density. To determine
the nucleon composition and energy spectrum of UHECRs emitted by FR0 sources, simulation
results from CRPropa3 are fit to Pierre Auger Observatory data. The resulting emission spectral
indices, rigidity cutoffs, and nucleon fractions are compared to recent Auger results. The FR0 simulations
include the approximately isotropic distribution of FR0 galaxies and various intergalactic
magnetic field configurations (including random and structured fields) and predict the fluxes of
secondary photons and neutrinos produced during UHECR propagation through cosmic photon
backgrounds. This comprehensive simulation allows for investigating the properties of the FR0
sources using observational multi-messenger data. Keywords: ultra-high energy cosmic rays, UHECR propagation, CRPropa, active galactic nuclei, jetted AGN, FR0 radio galaxies, Pierre Auger Observatory, UHECR energy spectrum Published in RUNG: 24.08.2023; Views: 2322; Downloads: 5
Full text (1,12 MB) This document has many files! More... |
14. Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger ObservatoryA. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2023, original scientific article Abstract: In this work we present the interpretation of the energy spectrum and mass composition data as measured by the Pierre Auger Collaboration above 6 × 10[sup]17 eV. We use an astrophysical model with two extragalactic source populations to model the hardening of the cosmic-ray flux at around 5 × 10[sup]18 eV (the so-called "ankle" feature) as a transition between these two components. We find our data to be well reproduced if sources above the ankle emit a mixed composition with a hard spectrum and a low rigidity cutoff. The component below the ankle is required to have a very soft spectrum and a mix of protons and intermediate-mass nuclei. The origin of this intermediate-mass component is not well constrained and it could originate from either Galactic or extragalactic sources. To the aim of evaluating our capability to constrain astrophysical models, we discuss the impact on the fit results of the main experimental systematic uncertainties and of the assumptions about quantities affecting the air shower development as well as the propagation and redshift distribution of injected ultra-high-energy cosmic rays (UHECRs). Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers, UHECR propagation, UHECR energy spectrum, UHECR mass composition Published in RUNG: 18.08.2023; Views: 2020; Downloads: 12
Full text (2,39 MB) This document has many files! More... |
15. Recent results from the Pierre Auger ObservatorySerguei Vorobiov, 2022, published scientific conference contribution abstract (invited lecture) Abstract: Ultra-high-energy cosmic rays (UHECRs) are mostly protons and heavier nuclei arriving on Earth from space and producing particle cascades in the atmosphere, ”extensive air showers”. As of today, the most precise and high-statistics data set of the rare (≤ 1 particle per sq.km per year above 10[sup]19 eV) UHECR events is obtained by the Pierre Auger Observatory, a large area (~3000 sq.km) hybrid detector in Argentina. The Auger Observatory determines the arrival directions and energies of the primary UHECR particles and provides constraints for their masses.
In this talk, I will present and discuss the recent results, including the detailed measurements of the cosmic-ray energy spectrum features, the study of the anisotropies in the UHECR arrival directions at large and intermediate angular scales, the multi-messenger searches, and the inferred cosmic-ray mass composition. Finally, the progress of the current upgrade of the Observatory, "AugerPrime" which is aimed at improving the sensitivity to the mass composition of ultra-high-energy cosmic rays, will be presented. Keywords: ultra-high-energy cosmic rays, Pierre Auger Observatory, UHECR mass composition, energy spectrum, anisotropies, AugerPrime upgrade Published in RUNG: 23.12.2022; Views: 2665; Downloads: 10
Link to full text This document has many files! More... |
16. The energy spectrum of ultra-high energy cosmic rays measured at the Pierre Auger Observatory and at the Telescope ArrayOlivier Deligny, Andrej Filipčič, Gašper Kukec Mezek, Jon Paul Lundquist, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECR), UHECR energy spectrum, Pierre Auger Observatory, Telescope Array Published in RUNG: 10.05.2021; Views: 3121; Downloads: 72
Full text (243,63 KB) |
17. Measurement of the energy spectrum of ultra-high energy cosmic rays using the Pierre Auger ObservatoryValerio Verzi, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: Pierre Auger Observatory, ultra-high energy cosmic rays (UHECR), UHECR energy spectrum Published in RUNG: 21.12.2020; Views: 3311; Downloads: 66
Full text (2,33 MB) |
18. Measurement of the spectrum of cosmic rays above 10^16.5 eV with Cherenkov–dominated events at the Pierre Auger ObservatoryVladimír Novotný, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECRs), Pierre Auger Observatory, UHECR energy spectrum, Cherenkov–dominated UHECR events Published in RUNG: 24.07.2020; Views: 3441; Downloads: 80
Full text (377,09 KB) |
19. Measurement of the cosmic ray flux near the second knee with the Pierre Auger ObservatoryAlan Coleman, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Marta Trini, Serguei Vorobiov, Lili Yang, Danilo Zavrtanik, Marko Zavrtanik, Lukas Zehrer, 2019, published scientific conference contribution Keywords: ultra-high energy cosmic rays (UHECR), UHECR energy spectrum, second knee, Pierre Auger Observatory Published in RUNG: 16.06.2020; Views: 3683; Downloads: 83
Full text (557,92 KB) |
20. Results from the Pierre Auger ObservatoryIvan De Mitri, Andrej Filipčič, Samo Stanič, Darko Veberič, Danilo Zavrtanik, Marko Zavrtanik, 2015, published scientific conference contribution Keywords: Pierre Auger Observatory, Ultra High Energy Cosmic Rays (UHECR), UHECR energy spectrum, UHECR mass composition Published in RUNG: 27.06.2017; Views: 5512; Downloads: 0 This document has many files! More... |