Repository of University of Nova Gorica

Search the repository
A+ | A- | Help | SLO | ENG

Query: search in
search in
search in
search in
* old and bologna study programme

Options:
  Reset


51 - 60 / 147
First pagePrevious page234567891011Next pageLast page
51.
Chasing gravitational waves with the Cherenkov Telescope Array
J. G. Green, Saptashwa Bhattacharyya, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, published scientific conference contribution

Abstract: The detection of gravitational waves (GWs) from a binary neutron star (BNS) merger by Advanced LIGO and Advanced Virgo (GW170817), along with the discovery of the electromagnetic counterparts of this GW event, ushered in a new era of multimessenger astronomy, providing the first direct evidence that BNS mergers are progenitors of short gamma-ray bursts (GRBs). Such events may also produce very-high-energy (VHE, > 100 GeV) photons which have yet to be detected in coincidence with a GW signal. The Cherenkov Telescope Array (CTA) is a next-generation VHE observatory which aims to be indispensable in this search, with an unparalleled sensitivity and ability to slew anywhere on the sky within a few tens of seconds. Achieving such a feat will require a comprehensive real-time strategy capable of coordinating searches over potentially very large regions of the sky. This work will evaluate and provide estimations on the number of GW-CTA events determined from simulated BNS systems and short GRBs, considering both on and off-axis emission. In addition, we will present and discuss the prospects of potential follow-up strategies with CTA.
Keywords: gravitational waves, binary neutron star merger, short gamma-ray bursts
Published in RUNG: 15.09.2023; Views: 1762; Downloads: 5
.pdf Full text (1,66 MB)
This document has many files! More...

52.
Low-luminosity jetted AGN as particle multi-messenger sources
Anita Reimer, Margot Boughelilba, Lukas Merten, Paolo Da Vela, Jon Paul Lundquist, Serguei Vorobiov, 2023, published scientific conference contribution abstract

Abstract: The detection of cosmic gamma rays, high-energy neutrinos and cosmic rays (CRs) signal the existence of environments in the Universe that allow particle acceleration to extremely high energies. These observable signatures from putative CR sources are the result of in-source acceleration of particles, their energy and time-dependent transport including interactions in an evolving environment and their escape from source, in addition to source-to-Earth propagation. Low-luminosity AGN jets constitute the most abundant persistent jet source population in the local Universe. The dominant subset of these, Fanaroff-Riley 0 (FR0) galaxies, have recently been proposed as sources contributing to the ultra-high-energy cosmic ray (UHECR) flux observed on Earth. This presentation assesses the survival, workings and multi-messenger signatures of UHECRs in low-luminosity jet environments, with focus on FR0 galaxies. For this purpose we use our recently developed, fully time-dependent CR particle and photon propagation framework which takes into account all relevant secondary production and energy loss processes, allows for an evolving source environment and efficient treatment of transport non-linearities due to the produced particles/photons being fed back into the simulation chain. Finally, we propagate UHE cosmic-ray nuclei and secondary cosmogenic photons and neutrinos from FR0 galaxies to Earth for several extragalactic magnetic field scenarios using the CRPropa3 framework, and confront the resulting energy spectra and composition on Earth with the current observational situation.
Keywords: multi-messenger astrophysics, ultra-high-energy cosmic rays, very-high-energy gamma-rays
Published in RUNG: 13.09.2023; Views: 1813; Downloads: 8
URL Link to file
This document has many files! More...

53.
Sensitivity of the Cherenkov Telescope Array to TeV photon emission from the Large Magellanic Cloud
A. Acharyya, R. Adam, Saptashwa Bhattacharyya, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, Miha Živec, 2023, original scientific article

Abstract: A deep survey of the Large Magellanic Cloud at ∼ 0.1−100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3−2.4 pending a flux increase by a factor > 3−4 over ∼ 2015−2035. Large-scale interstellar emission remains mostly out of reach of the survey if its > 10 GeV spectrum has a soft photon index ∼ 2.7, but degree-scale 0.1 − 10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1 − 10% of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within < 100 pc. Finally, the survey could probe the canonical velocity-averaged cross section for self-annihilation of weakly interacting massive particles for cuspy Navarro-Frenk-White profiles.
Keywords: very-high energy (VHE) gamma-rays, Cherenkov Telescope Array Observatory, Large Magellanic Cloud, pulsar wind nebulas, galaxiesstar-forming regions, cosmic rays, dark matter
Published in RUNG: 02.06.2023; Views: 2305; Downloads: 4
.pdf Full text (3,66 MB)

54.
55.
56.
Classification of gamma-ray targets for velocity-dependent and subhalo-boosted dark-matter annihilation
Thomas Lacroix, Gaetán Facchinetti, Judit Pérez Romero, Martin Stref, Julien Lavalle, David Maurin, Miguel Sánchez-Conde, original scientific article

Abstract: Gamma-ray observations have long been used to constrain the properties of dark matter (DM), with a strong focus on weakly interacting massive particles annihilating through velocity-independent processes. However, in the absence of clear-cut observational evidence for the simplest candidates, the interest of the community in more complex DM scenarios involving a velocity-dependent cross-section has been growing steadily over the past few years. We present the first systematic study of velocity-dependent DM annihilation (in particular p-wave annihilation and Sommerfeld enhancement) in a variety of astrophysical objects, not only including the well-studied Milky Way dwarf satellite galaxies, but nearby dwarf irregular galaxies and local galaxy clusters as well. Particular attention is given to the interplay between velocity dependence and DM halo substructure. Uncertainties related to halo mass, phase-space and substructure modelling are also discussed in this velocity-dependent context. We show that, for s-wave annihilation, extremely large subhalo boost factors are to be expected, up to 10^11 in clusters and up to 10^6–10^7 in dwarf galaxies where subhalos are usually assumed not to play an important role. Boost factors for p-wave annihilation are smaller but can still reach 10^3 in clusters. The angular extension of the DM signal is also significantly impacted, with e.g. the cluster typical emission radius increasing by a factor of order 10 in the s-wave case. We also compute the signal contrast of the objects in our sample with respect to annihilation happening in the Milky Way halo. Overall, we find that the hierarchy between the brightest considered targets depends on the specific details of the assumed particle-physics model.
Keywords: dark matter theory, dwarf galaxies, galaxy clusters, gamma-ray theory
Published in RUNG: 27.01.2023; Views: 2030; Downloads: 0
This document has many files! More...

57.
Sensitivity of CTA to gamma-ray emission from the Perseus galaxy cluster
Judit Pérez Romero, published scientific conference contribution

Abstract: In these proceedings we summarize the current status of the study of the sensitivity of the Cherenkov Telescope Array (CTA) to detect diffuse gamma-ray emission from the Perseus galaxy cluster. Gamma-ray emission is expected in galaxy clusters both from interactions of cosmic rays (CR) with the intra-cluster medium, or as a product of annihilation or decay of dark matter (DM) particles in case they are weakly interactive massive particles (WIMPs). The observation of Perseus constitutes one of the Key Science Projects to be carried out by the CTA Consortium. In this contribution, we focus on the DM-induced component of the flux. OurDMmodelling includes the substructures we expect in the main halo which will boost the annihilation signal significantly. We adopt an ON/OFF observation strategy and simulate the expected gamma-ray signals. Finally we compute the expected CTA sensitivity using a likelihood maximization analysis including the most recent CTA instrument response functions. In absence of signal, we show that CTA will allow us to provide stringent and competitive constraints on TeV DM, especially for the case of DM decay.
Keywords: dark matter, gamma-ray astronomy, galaxy clusters, cosmic rays and astroparticles
Published in RUNG: 27.01.2023; Views: 1920; Downloads: 18
URL Link to full text
This document has many files! More...

58.
Spatial extension of dark subhalos as seen by Fermi-LAT and the implications for WIMP constraints
Javier Coronado-Blázquez, Miguel Sánchez-Conde, Judit Pérez Romero, Alejandra Aguirre-Santaella, 2022, original scientific article

Abstract: Spatial extension has been hailed as a “smoking gun” in the gamma-ray search of dark galactic subhalos, which would appear as unidentified sources for gamma-ray telescopes. In this work, we study the sensitivity of the Fermi-LAT to extended subhalos using simulated data based on a realistic sky model. We simulate spatial templates for a set of representative subhalos, whose parameters were derived from our previous work with N-body cosmological simulation data. We find that detecting an extended subhalo and finding an unequivocal signal of angular extension requires, respectively, a flux 2 to 10 times larger than in the case of a pointlike source. By studying a large grid of models, where parameters such as the WIMP mass, annihilation channel, or subhalo model are varied significantly, we obtain the response of the LAT as a function of the product of annihilation cross-section times the J-factor. Indeed, we show that spatial extension can be used as an additional “filter” to reject subhalos candidates among the pool of unidentified LAT sources, as well as a smoking gun for positive identification. For instance, typical angular extensions of a few tenths of a degree are expected for the considered scenarios. Finally, we also study the impact of the obtained LAT sensitivity to such extended subhalos on the achievable dark matter constraints, which are a few times less constraining than comparable point-source limits.
Keywords: dark matter, cosmic rays and astroparticles, gamma-ray astronomy, particle astrophysics, particle dark matter
Published in RUNG: 26.01.2023; Views: 2607; Downloads: 0
This document has many files! More...

59.
Dark matter search in dwarf irregular galaxies with the Fermi Large Area Telescope
Viviana Gammaldi, Judit Pérez Romero, Javier Coronado-Blázquez, Mattia di Mauro, Ekaterina Karukes, Miguel Sánchez-Conde, Paolo Salucci, 2021, original scientific article

Abstract: We analyze 11 years of Fermi-Large Area Telescope (LAT) data corresponding to the sky regions of seven dwarf irregular (dIrr) galaxies. DIrrs are dark matter (DM)-dominated systems, proposed as interesting targets for the indirect search of DM with gamma rays. The galaxies represent interesting cases with a strong disagreement between the density profiles (core versus cusp) inferred from observations and numerical simulations. In this work, we addressed the problem by considering two different DM profiles, based on both the fit to the rotation curve (in this case, a Burkert cored profile) and results from N-body cosmological simulations (i.e., Navarro-Frenk-White cuspy profile). We also include halo substructure in our analysis, which is expected to boost the DM signal by a factor of 10 in halos such as those of dIrrs. For each DM model and dIrr, we create a spatial template of the expected DM-induced gamma-ray signal to be used in the analysis of Fermi-LAT data. No significant emission is detected from any of the targets in our sample. Thus, we compute upper limits on the DM annihilation cross section versus mass parameter space. Among the seven dIrrs, we find IC10 and NGC6822 to yield the most stringent individual constraints, independently of the adopted DM profile. We also produce combined DM limits for all objects in the sample, which turn out to be dominated by IC10 for all DM models and annihilation channels, i.e., b¯b, τ+τ−, and W+W−. The strongest constraints are obtained for b¯b and are at the level of <σv>∼7×10−26 cm3 s−1 at mχ ∼ 6 GeV. Though these limits are a factor of ∼3 higher than the thermal relic cross section at low weakly interacting massive particles masses, they are independent from and complementary to those obtained by means of other targets.
Keywords: Dark matter, gamma-ray astronomy, galaxies, astronomical masses and mass distributions
Published in RUNG: 26.01.2023; Views: 1745; Downloads: 0
This document has many files! More...

60.
Studies of cosmic rays in our Galaxy with Cherenkov Telescope Array : diploma seminar
Zoja Rokavec, 2022, research project (high school)

Keywords: cosmic rays, cosmic PeVatrons, Cherenkov Telescope Array, very-high-energy gamma-rays
Published in RUNG: 15.06.2022; Views: 2131; Downloads: 0
This document has many files! More...

Search done in 0.04 sec.
Back to top