1. Lens mass estimate in the galactic disk extreme parallax microlensing event Gaia19dkeM. Maskoliunas, Łukasz Wyrzykowski, K. Howil, P. J. Mikołajczyk, P. Zieliński, Z. Kaczmarek, K. Kruszyńska, M. Jabłońska, J. Zdanavičius, Mateusz Bronikowski, 2024, izvirni znanstveni članek Opis: We present the results of our analysis of Gaia19dke, an extraordinary microlensing event in the Cygnus constellation that the Gaia satellite discovered. This event featured a strong microlensing parallax effect, resulting in multiple light curve peaks. We conducted extensive photometric, spectroscopic, and high-resolution imaging follow-up observations to determine the mass and nature of the invisible lensing object. Using the Milky Way priors on the density and proper motion of lenses, we found that the lens is likely to be located at a distance of DL=3.3(+2.1, -1.7) kpc, and has a mass of ML=0.50(+0.82, -0.27) M☉. Based on its low luminosity and mass, we propose that the lens in the Gaia19dke event is either a main sequence star or an isolated white dwarf. Due to its brightness, longevity, and lack of blending, Gaia19dke is a target for which the forthcoming Gaia Data Release 4 data will help to constrain the parameters of the lens. Ključne besede: gravitational lensing, micro stars, fundamental parameters, white dwarfs, astrophysics, solar astrophysics, stellar astrophysics, astrophysics of galaxies, instrumentation for astrophysics, methods for astrophysics Objavljeno v RUNG: 13.01.2025; Ogledov: 71; Prenosov: 0
Povezava na datoteko Gradivo ima več datotek! Več... |
2. Gaia22dkvLb : a microlensing planet potentially accessible to radial-velocity characterizationZexuan Wu, Subo Dong, Tuan Yi, Zhuokai Liu, Kareem El-Badry, Andrew Gould, Łukasz Wyrzykowski, K. A. Rybicki, Mateusz Bronikowski, 2024, izvirni znanstveni članek Opis: We report discovering an exoplanet from following up a microlensing event alerted by Gaia. The event Gaia22dkv is toward a disk source rather than the traditional bulge microlensing fields. Our primary analysis yields a Jovian planet with M_p = 0.59 (+0.15, -0.05) M_J at a projected orbital separation r_perpendicular = 1.4 (+0.8, -0.3) au, and the host is a ∼1.1 M⊙ turnoff star at ∼1.3 kpc. At r' ~= 14, the host is far brighter than any previously discovered microlensing planet host, opening up the opportunity to test the microlensing model with radial velocity (RV) observations. RV data can be used to measure the planet's orbital period and eccentricity, and they also enable searching for inner planets of the microlensing cold Jupiter, as expected from the "inner–outer correlation" inferred from Kepler and RV discoveries. Furthermore, we show that Gaia astrometric microlensing will not only allow precise measurements of its angular Einstein radius θ_E but also directly measure the microlens parallax vector and unambiguously break a geometric light-curve degeneracy, leading to the definitive characterization of the lens system. Ključne besede: gravitational microlensing exoplanet detection, planetary astrophysics, astrophysics of galaxies, instrumentation astrophysics, methods for astrophysics, solar astrophysics, stellar astrophysics Objavljeno v RUNG: 23.08.2024; Ogledov: 835; Prenosov: 8
Celotno besedilo (5,11 MB) Gradivo ima več datotek! Več... |
3. Flares from the centers of galaxies with Gaia and OGLE surveysNada Ihanec, 2018, magistrsko delo Opis: Modern wide-field-of-view and all-sky satellites (e.g. Gaia) and ground based surveys (e.g. OGLE) repeatedly cover a large part of the sky and are detecting new, transient astrophysical sources on daily basis.
In this thesis I analyzed the data from Gaia and OGLE transient surveys, with special focus on transients located near the centres of galaxies to detect possible Tidal Disruption Events. These occur when a star gets too close to a Super-Massive Black Hole, which lurks in the centres of most galaxies, and gets disrupted due to the black hole's gravitational tidal forces.
The goal of my research was to detect possible Tidal Disruption Events and eliminate false candidates, such as supernovae. The work involved daily inspection of new alerts, identified with Gaia and OGLE Transient Detection System. I searched for potential transients in galactic nuclei and in case there was such a transient detected, follow-up spectroscopic observations were initiated in order to help classify the object.
During the course of my work I analyzed spectra obtained with the largest telescopes in the world (SALT, VLT) and performed the spectral template matching, recognition of spectral features related to known classes of transients, determination of redshift etc. Ključne besede: Flares, transients, Gaia, OGLE, supernovae, tidal disruption events, nuclear transients Objavljeno v RUNG: 14.05.2019; Ogledov: 5253; Prenosov: 138
Celotno besedilo (8,11 MB) |