Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 20
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
1.
The distribution of ultrahigh-energy cosmic rays along the supergalactic plane measured at the Pierre Auger Observatory
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: Ultrahigh-energy cosmic rays are known to be mainly of extragalactic origin, and their propagation is limited by energy losses, so their arrival directions are expected to correlate with the large-scale structure of the local Universe. In this work, we investigate the possible presence of intermediate-scale excesses in the flux of the most energetic cosmic rays from the direction of the supergalactic plane region using events with energies above 20 EeV recorded with the surface detector array of the Pierre Auger Observatory up to 2022 December 31, with a total exposure of 135,000 sq. km sr yr. The strongest indication for an excess that we find, with a posttrial significance of 3.1σ, is in the Centaurus region, as in our previous reports, and it extends down to lower energies than previously studied. We do not find any strong hints of excesses from any other region of the supergalactic plane at the same angular scale. In particular, our results do not confirm the reports by the Telescope Array Collaboration of excesses from two regions in the Northern Hemisphere at the edge of the field of view of the Pierre Auger Observatory. With a comparable integrated exposure over these regions, our results there are in good agreement with the expectations from an isotropic distribution.
Ključne besede: ultra-high-energy cosmic rays, UHECR propagation, large-scale structure, UHECR energy losses, UHECR deflections, supergalactic plane region, Centaurus region, Pierre Auger Observatory, Auger surface detector array
Objavljeno v RUNG: 06.05.2025; Ogledov: 308; Prenosov: 2
.pdf Celotno besedilo (2,20 MB)
Gradivo ima več datotek! Več...

2.
Improved calibration methods and reconstruction of the underground muon detector of the Pierre Auger Observatory
Joaquín De Jesús, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: As part of the upgrade of the Pierre Auger Observatory, known as AugerPrime, the Underground Muon Detector is being deployed in the low-energy extension of the Surface Detector. It comprises an array of 30 m[sup]2 plastic scintillator muon counters, buried 2.3 meters underground near the water-Cherenkov detectors, allowing for direct measurement of the muonic component of air showers in the energy range of 10[sup]16.5 − 10[sup]19 eV. To achieve an extended dynamic range, the detector operates in two modes: the binary mode, which is optimized for low muon densities, and the ADC mode, designed for high muon densities. In this contribution, we present the latest improvements to the calibration procedure of the ADC mode and to the data reconstruction of the binary mode. We assess their performance with simulations.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, AugerPrime upgrade, Auger underground muon detector (UMD), muonic air-shower component, detector calibration, data reconstruction
Objavljeno v RUNG: 30.04.2025; Ogledov: 487; Prenosov: 5
.pdf Celotno besedilo (991,94 KB)
Gradivo ima več datotek! Več...

3.
Amplifying UHECR arrival direction information using mass estimators at the Pierre Auger Observatory
Lorenzo Apollonio, A. Abdul Halim, P. Abreu, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, objavljeni znanstveni prispevek na konferenci

Opis: The origin of Ultra-High-Energy Cosmic Rays (UHECRs) is one of the biggest mysteries in modern astrophysics. Since UHECRs are deflected by Galactic and extragalactic magnetic fields, their arrival directions do not point to their sources. Previous analyses conducted on the arrival directions of high-energy events (E ≥ 32 EeV) recorded by the Surface Detector of the Pierre Auger Observatory have not shown significant anisotropies. The largest excess found in the first 19 years of data - at the 4.0 sigma level - is in the region around Centaurus A, and it is also the driving force of a correlation of UHECR arrival directions with a catalog of Starburst Galaxies, which is at the 3.8 sigma level. Since UHECRs are mostly nuclei, the lightest ones (least charged) are also the least deflected. While the mass of the events can be estimated better using the Fluorescence Detector of the Pierre Auger Observatory, the Surface Detector provides the necessary statistics needed for astrophysical studies. The introduction of novel mass-estimation techniques, such as machine learning models and an algorithm based on air-shower universality, will help identify high-rigidity events in the Surface Detector data of the Pierre Auger Observatory. With this work, we present how event-per-event mass estimators can help enhance the sensitivity in the search for anisotropies in the arrival directions of UHECRs at small and intermediate angular scales using simulations.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR propagation, UHECR arrival directions, UHECR mass composition, Centaurus A radio galaxy, starburst galaxies, air-shower universality
Objavljeno v RUNG: 30.04.2025; Ogledov: 382; Prenosov: 6
.pdf Celotno besedilo (2,03 MB)
Gradivo ima več datotek! Več...

4.
The Pierre Auger Observatory open data
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected by the Pierre Auger Observatory from 2004 to 2018, during the first phase of operation of the Observatory. The Open Data Portal includes detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then, the Portal has been updated and extended. In 2023, a catalog of the highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community, including professional and citizen scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit, and the technical implementation of the release of data by the largest cosmic-ray detector ever built and anticipates its future developments.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, open data, UHECR event data, space weather data, Auger Open Data Portal
Objavljeno v RUNG: 03.04.2025; Ogledov: 478; Prenosov: 8
.pdf Celotno besedilo (3,12 MB)
Gradivo ima več datotek! Več...

5.
Search for the anomalous events detected by ANITA using the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: A dedicated search for upward-going air showers at zenith angles exceeding 110° and energies E>0.1  EeV has been performed using the Fluorescence Detector of the Pierre Auger Observatory. The search is motivated by two “anomalous” radio pulses observed by the ANITA flights I and III that appear inconsistent with the standard model of particle physics. Using simulations of both regular cosmic-ray showers and upward-going events, a selection procedure has been defined to separate potential upward-going candidate events and the corresponding exposure has been calculated in the energy range [0.1–33] EeV. One event has been found in the search period between January 1, 2004, and December 31, 2018, consistent with an expected background of 0.27 ± 0.12 events from misreconstructed cosmic-ray showers. This translates to an upper bound on the integral flux of (7.2±0.2)×10[sup]−21  cm[sup]−2 sr[sup]−1 y[sup]−1 and (3.6±0.2)×10−20  cm[sup]−2 sr[sup]−1 y[sup]−1 for an E[sup]−1 and E[sup]−2 spectrum, respectively. An upward-going flux of showers normalized to the ANITA observations is shown to predict over 34 events for an E[sup]−3 spectrum and over 8.1 events for a conservative E[sup]−5 spectrum, in strong disagreement with the interpretation of the anomalous events as upward-going showers.
Ključne besede: ultra-high-energy cosmic rays, extensive air showers, upward-going air showers, Pierre Auger Observatory, Fluorescence Detector, anomalous ANITA events
Objavljeno v RUNG: 28.03.2025; Ogledov: 451; Prenosov: 5
.pdf Celotno besedilo (447,09 KB)
Gradivo ima več datotek! Več...

6.
Inference of the Mass Composition of Cosmic Rays with Energies from 10[sup]18.5 to 10[sup]20 eV Using the Pierre Auger Observatory and Deep Learning
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We present measurements of the atmospheric depth of the shower maximum Xmax, inferred for the first time on an event-by-event level using the Surface Detector of the Pierre Auger Observatory. Using deep learning, we were able to extend measurements of the Xmax distributions up to energies of 100 EeV (10[sup]20 eV), not yet revealed by current measurements, providing new insights into the mass composition of cosmic rays at extreme energies. Gaining a 10-fold increase in statistics compared to the Fluorescence Detector data, we find evidence that the rate of change of the average Xmax with the logarithm of energy features three breaks at 6.5 ± 0.6 (stat) ± 1 (sys) EeV, 11 ± 2 (stat) ± 1 (sys) EeV, and 31 ± 5 (stat) ± 3 (sys) EeV, in the vicinity to the three prominent features (ankle, instep, suppression) of the cosmic-ray flux. The energy evolution of the mean and standard deviation of the measured Xmax distributions indicates that the mass composition becomes increasingly heavier and purer, thus being incompatible with a large fraction of light nuclei between 50 EeV and 100 EeV.
Ključne besede: ultra-high-energy cosmic rays (UHECRs), extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of the shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 748; Prenosov: 5
.pdf Celotno besedilo (586,04 KB)
Gradivo ima več datotek! Več...

7.
Measurement of the depth of maximum of air-shower profiles with energies between ▫$10^{18.5} and 10^{20}$▫ eV using the surface detector of the Pierre Auger Observatory and deep learning
A. Abdul Halim, P. Abreu, M. Aglietta, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2025, izvirni znanstveni članek

Opis: We report an investigation of the mass composition of cosmic rays with energies from 3 to 100 EeV (1 EeV = 10[sup]18 eV) using the distributions of the depth of shower maximum Xmax. The analysis relies on ∼50,000 events recorded by the surface detector of the Pierre Auger Observatory and a deep-learning-based reconstruction algorithm. Above energies of 5 EeV, the dataset offers a 10-fold increase in statistics with respect to fluorescence measurements at the Observatory. After cross-calibration using the fluorescence detector, this enables the first measurement of the evolution of the mean and the standard deviation of the Xmax distributions up to 100 EeV. Our findings are threefold: (i) The evolution of the mean logarithmic mass toward a heavier composition with increasing energy can be confirmed and is extended to 100 EeV. (ii) The evolution of the fluctuations of Xmax toward a heavier and purer composition with increasing energy can be confirmed with high statistics. We report a rather heavy composition and small fluctuations in Xmax at the highest energies. (iii) We find indications for a characteristic structure beyond a constant change in the mean logarithmic mass, featuring three breaks that are observed in proximity to the ankle, instep, and suppression features in the energy spectrum.
Ključne besede: ultra-high-energy cosmic rays, UHECRs, extensive air showers, Pierre Auger Observatory, UHECR mass composition, depth of shower maximum, fluorescence detector, surface detector, deep learning
Objavljeno v RUNG: 20.01.2025; Ogledov: 779; Prenosov: 8
.pdf Celotno besedilo (2,71 MB)
Gradivo ima več datotek! Več...

8.
Large-scale cosmic-ray anisotropies with 19 yr of data from the Pierre Auger Observatory
A. Abdul Halim, P. Abreu, M. Aglietta, Ingo Allekotte, K. Almeida Cheminant, Jon Paul Lundquist, Shima Ujjani Shivashankara, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, izvirni znanstveni članek

Opis: We present results of the measurement of large-scale anisotropies in the arrival directions of ultra–high-energy cosmic rays detected at the Pierre Auger Observatory during 19 yr of operation, prior to AugerPrime, the upgrade of the observatory. The 3D dipole amplitude and direction are reconstructed above 4 EeV in four energy bins. Besides the established dipolar anisotropy in right ascension above 8 EeV, the Fourier amplitude of the 8–16 EeV energy bin is now also above the 5σ discovery level. No time variation of the dipole moment above 8 EeV is found, setting an upper limit to the rate of change of such variations of 0.3% per year at the 95% confidence level. Additionally, the results for the angular power spectrum are shown, demonstrating no other statistically significant multipoles. The results for the equatorial dipole component down to 0.03 EeV are presented, using for the first time a data set obtained with a trigger that has been optimized for lower energies. Finally, model predictions are discussed and compared with observations, based on two source emission scenarios obtained in the combined fit of spectrum and composition above 0.6 EeV.
Ključne besede: ultra–high-energy cosmic rays, UHECRs, UHECR anisotropies, Pierre Auger Observatory, dipolar anisotropy in right ascension, Fourier amplitude analysis, angular power spectrum, equatorial dipole component, UHECR source emission scenarios
Objavljeno v RUNG: 26.11.2024; Ogledov: 947; Prenosov: 5
.pdf Celotno besedilo (1,16 MB)
Gradivo ima več datotek! Več...

9.
Search for photons above ▫$10^{18}$▫ eV by simultaneously measuring the atmospheric depth and the muon content of air showers at the Pierre Auger Observatory
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, izvirni znanstveni članek

Opis: The Pierre Auger Observatory is the most sensitive instrument to detect photons with energies above 1⁢0[sup]17  eV. It measures extensive air showers generated by ultrahigh energy cosmic rays using a hybrid technique that exploits the combination of a fluorescence detector with a ground array of particle detectors. The signatures of a photon-induced air shower are a larger atmospheric depth of the shower maximum (�max) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced cascades. In this work, a new analysis technique in the energy interval between 1 and 30 EeV (1  EeV=1⁢0[sup]18  eV) has been developed by combining the fluorescence detector-based measurement of �max with the specific features of the surface detector signal through a parameter related to the air shower muon content, derived from the universality of the air shower development. No evidence of a statistically significant signal due to photon primaries was found using data collected in about 12 years of operation. Thus, upper bounds to the integral photon flux have been set using a detailed calculation of the detector exposure, in combination with a data-driven background estimation. The derived 95% confidence level upper limits are 0.0403, 0.01113, 0.0035, 0.0023, and 0.0021  km[sup]−2 sr[sup]−1 yr[sup]−1 above 1, 2, 3, 5, and 10 EeV, respectively, leading to the most stringent upper limits on the photon flux in the EeV range. Compared with past results, the upper limits were improved by about 40% for the lowest energy threshold and by a factor 3 above 3 EeV, where no candidates were found and the expected background is negligible. The presented limits can be used to probe the assumptions on chemical composition of ultrahigh energy cosmic rays and allow for the constraint of the mass and lifetime phase space of super-heavy dark matter particles.
Ključne besede: ultra-high-energy photons, ultra-high-energy cosmic rays, Pierre Auger Observatory, extensive air showers
Objavljeno v RUNG: 30.09.2024; Ogledov: 1479; Prenosov: 3
.pdf Celotno besedilo (4,39 MB)
Gradivo ima več datotek! Več...

10.
Impact of the magnetic horizon on the interpretation of the Pierre Auger Observatory spectrum and composition data
A. Abdul Halim, Andrej Filipčič, Jon Paul Lundquist, Shima Ujjani Shivashankara, Samo Stanič, Serguei Vorobiov, Danilo Zavrtanik, Marko Zavrtanik, 2024, izvirni znanstveni članek

Opis: The flux of ultra-high energy cosmic rays reaching Earth above the ankle energy (5 EeV) can be described as a mixture of nuclei injected by extragalactic sources with very hard spectra and a low rigidity cutoff. Extragalactic magnetic fields existing between the Earth and the closest sources can affect the observed CR spectrum by reducing the flux of low-rigidity particles reaching Earth. We perform a combined fit of the spectrum and distributions of depth of shower maximum measured with the Pierre Auger Observatory including the effect of this magnetic horizon in the propagation of UHECRs in the intergalactic space. We find that, within a specific range of the various experimental and phenomenological systematics, the magnetic horizon effect can be relevant for turbulent magnetic field strengths in the local neighbourhood in which the closest sources lie of order Brms ≃ (50–100) nG (20 Mpc/ds)( 100 kpc/Lcoh)1/2, with ds the typical intersource separation and Lcoh the magnetic field coherence length. When this is the case, the inferred slope of the source spectrum becomes softer and can be closer to the expectations of diffusive shock acceleration, i.e., ∝ E-2. An additional cosmic-ray population with higher source density and softer spectra, presumably also extragalactic and dominating the cosmic-ray flux at EeV energies, is also required to reproduce the overall spectrum and composition results for all energies down to 0.6 EeV.
Ključne besede: ultra high energy cosmic rays, UHECR propagation, magnetic horizon effect, Pierre Auger Observatory
Objavljeno v RUNG: 24.09.2024; Ogledov: 1019; Prenosov: 1
.pdf Celotno besedilo (3,65 MB)
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.04 sek.
Na vrh