Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 10
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Characterization of electrochemical processes in metal-organic batteries by X-ray Raman spectroscopy
Ava Rajh, Iztok Arčon, Klemen Bučar, Matjaž Žitnik, Marko Petric, Alen Vižintin, Jan Bitenc, Urban Košir, Robert Dominko, Hlynur Gretarsson, Martin Sundermann, Matjaž Kavčič, 2022, izvirni znanstveni članek

Opis: X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard Xrays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal−organic batteries during the charge/ discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal−organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal−organic batteries.
Ključne besede: X-ray Raman spectroscopy, meta-organic batteries, oxygen K-edge XANES, electrochemical processes
Objavljeno v RUNG: 24.03.2022; Ogledov: 1622; Prenosov: 20
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

2.
Spectroscopic insights into the electrochemical mechanism of rechargeable calcium/sulfur batteries
Antonio Scafuri, Romain Berthelot, Klemen Pirnat, Alen Vižintin, Jan Bitenc, Giuliana Aquilanti, Dominique Foix, Rémi Dedryvère, Iztok Arčon, Robert Dominko, Lorenzo Stievano, 13, izvirni znanstveni članek

Opis: Calcium batteries represent a promising alternative to lithium metal systems. The combination of the low redox potential and low cost and the energy-dense calcium anode (2073 mAh/cm3, similar to 2044 mAh/cm3 for Li) with appropriate low-cost cathode materials such as sulfur could produce a game-changing technology in several fields of applications. In this work, we present the reversible activity of a proof-of-concept Ca/S battery at room temperature, characterized by a surprising medium-term cycling stability with low polarization, promoted by the use of a simple positive electrode made of sulfur supported on an activated carbon cloth scaffold, and a state-of-the-art fluorinated alkoxyborate-based electrolyte. Insights into the electrochemical mechanism governing the chemistry of the Ca/S system were obtained for the first time by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy. The mechanism implies the formation of different types of soluble polysulfide species during both charge and discharge at room temperature, and the formation of solid CaS at the end of discharge. The reversible electrochemical activity is proven by the reformation of elemental sulfur at the end of the following charge. These promising results open the way to the comprehension of emerging Ca/S systems, which may represent a valid alternative to Mg/S and Li/S batteries.
Ključne besede: Calcium/Sulfur Batteries EXAFS, XANES
Objavljeno v RUNG: 17.10.2020; Ogledov: 2820; Prenosov: 0
Gradivo ima več datotek! Več...

3.
A mechanistic study of metal sulfur batteries
Robert Dominko, Alen Vižintin, Sara Drvarič Talian, Ana Robba, Iztok Arčon, 2018, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Ključne besede: Li-sulphur batteries, Sulphur XANES, magnesium
Objavljeno v RUNG: 15.10.2020; Ogledov: 2313; Prenosov: 0

4.
Role of Cu current collector on electrochemical mechanism of Mg–S battery
Ana Robba, Maja Mežnar, Alen Vižintin, Jan Bitenc, Jernej Bobnar, Iztok Arčon, Anna Randon-Vitanova, Robert Dominko, 2020, izvirni znanstveni članek

Opis: Development of magnesium sulfur battery is accompanied with all known difficulties present in Li–S batteries, however with even more limited choice of electrolytes. In the present work, the influence of current collector on electrochemical mechanism was investigated in light of different reports where improved behavior was ascribed to electrolyte. Notable differences in cycling behavior are reported when Al current collector is replaced by Cu current collector independent of electrolyte. The initial reduction of sulfur follows similar reaction path no mater of current collector, but formation of MgS can be in competition with formation of CuS in the presence of Cu cations. With the subsequent cycling cells prepared from cathodes deposited on Cu current collector show decrease in the voltage and formation of single plateau during cycling. The change corresponds to the involvement of Cu into the reaction and formation of redox couple Mg/CuS as determined by Cu K-edge XANES measurements. Corrosion of Cu foil is identified by SEM and serves as a source of Cu cations for the chemical reaction between Cu and polysulfides. Mg/CuS redox couple shows improved cycling stability, but theoretical energy density is severely reduced due to substitution of S with CuS as cathode active material.
Ključne besede: Magnesium Sulfur Rechargeable batteries Current collector Copper Corrosion
Objavljeno v RUNG: 16.01.2020; Ogledov: 2933; Prenosov: 0
Gradivo ima več datotek! Več...

5.
Sulfur based batteries studied by in-operando S K-edge RIXS and XAS spectroscopy
Matjaž Kavčič, Ana Robba, Janez Bitenc, Alen Vižintin, Iztok Arčon, Matjaž Žitnik, Klemen Bučar, Robert Dominko, 2018, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Sulfur based batteries are considered as very attractive energy storage devices. Sulfur is one of the most abundant elements in the earth, it is electrochemically active material which can accept up to two electrons per atom. In combination with alkali metals, sulfur forms electrochemical couples with much higher theoretical energy density compared to Li-ion batteries commonly available today. At the moment, the electrochemical couple with Li is most extensively studied. While the main principle of operation is known the relevant operation mechanism(s) is not completely clear. Even more promising is the electrochemical couple with Mg providing almost twofold higher volumetric energy density due to its ability to provide two electrons during oxidation. However, Mg-S batteries are still in the very early stage of research and development and the complex mechanism of sulfur conversion has been less extensively studied. In order to improve the understanding of sulfur electrochemical conversion and its interactions within electrode, we need to apply new experimental approaches capable to provide precise information about local environment of S in the cathode during battery operation. In our work, resonant inelastic X-ray scattering (RIXS) and XAS measurements at the sulfur K-edge performed in operando mode were used to study the lithium-polysulfide formation during the discharge process. Measurements were performed at ID26 beamline of the ESRF synchrotron using tender X-ray emission spectrometer [1]. Resonant excitation condition enhanced the sensitivity for the lithium−polysulfide detection. On the other hand, the sulfate signal from the electrolyte was heavily suppressed and the self-absorption effects minimized due to fixed excitation energy. This experimental methodology was used to provide quantitative analysis of sulfur compounds in the cathode of a Li−S battery cell during the discharge process [2]. The high-voltage plateau in the discharge curve was characterized by a rapid conversion of solid sulfur into liquid phase Li polysulfides reaching its maximum at the end of this plateau. At this point the starting point for the precipitation of the Li2S from the liquid polysulfide phase was observed. The same approach has been used also for the Mg-S battery revealing similar mechanism as in case of Li-S battery [3]. The electrochemical conversion of sulfur with magnesium proceeds through two well-defined plateaus, which correspond to the equilibrium between sulfur and Mg polysulfides (high-voltage plateau) and polysulfides and MgS (low-voltage plateau).
Ključne besede: Mg-Sulphur batteries, XANES, RIXS
Objavljeno v RUNG: 13.09.2018; Ogledov: 4378; Prenosov: 0
Gradivo ima več datotek! Več...

6.
7.
Polysulfides formation in different electrolytes from the perspective of X-ray absorption spectroscopy
Robert Dominko, Alen Vižintin, Giuliana Aquilanti, Lorenzo Stievano, Maria Joseph Helen, Anji Reddy Munnangi, Maximilian Fichtner, Iztok Arčon, 2018, izvirni znanstveni članek

Opis: Li-S batteries are promising energy storage technology for the future, however there two major problems remained which need to be solved before successful commercialization. Capacity fading due to polysulfide shuttle and corrosion of lithium metal are directly connected with the type and quantity of electrolyte used in the cells. Several recent works show dependence of the electrochemical behavior of Li-S batteries on type of the electrolyte. In this work we compare and discuss a discharge mechanism of sulfur conversion in three different electrolytes based on measurements with sulfur K-edge XAS. The sulfur conversion mechanism in the ether based electrolytes, the most studied type of solvents in the Li-S batteries, which are enabling high solubility of polysulfides are compared with the fluorinated ether based electrolytes with a reduced polysulfide solubility and in carbonate based electrolytes with the sulfur confined into a ultramicroporous carbon. In all three cases the sulfur reduction proceeds through polysulfide intermediate phases with a difference on the type polysulfides detected at different steps of discharge.
Ključne besede: Li-S batteries, operando sulphur K-edge XANES, EXAFS, Li-polysulphides
Objavljeno v RUNG: 01.06.2018; Ogledov: 3501; Prenosov: 0
Gradivo ima več datotek! Več...

8.
A Mechanistic Study of Magnesium Sulfur Batteries
Ana Robba, Alen Vižintin, Jan Bitenc, Gregor Mali, Iztok Arčon, Matjaž Kavčič, Matjaž Žitnik, Klemen Bučar, Giuliana Aquilanti, Charlotte Martineau-Corcos, Anna Randon-Vitanova, Robert Dominko, 2017, izvirni znanstveni članek

Opis: Magnesium sulfur batteries are considered as attractive energy storage devices due to the abundance of electrochemically active materials and high theoretical energy density. Here we report the mechanism of a Mg-S battery operation, which was studied in the presence of simple and commercially available salts dissolved in a mixture of glymes. The electrolyte offers high sulfur conversion into MgS in the first discharge with low polarization. The electrochemical conversion of sulfur with magnesium proceeds through two well-defined plateaus, which correspond to the equilibrium between sulfur and polysulfides (high-voltage plateau) and polysulfides and MgS (low-voltage plateau). As shown by XANES, RIXS and NMR studies, the end discharge phase involves MgS with Mg atoms in a tetrahedral environment resembling the wurtzite structure, while chemically synthesized MgS crystalizes in the rock-salt structure with octahedral coordination of magnesium.
Ključne besede: magnesium, sulfur, rechargeable batteries, XAS, NMR
Objavljeno v RUNG: 19.10.2017; Ogledov: 4336; Prenosov: 0
Gradivo ima več datotek! Več...

9.
The mechanism of Li2S activation in lithium-sulfur batteries: Can we avoid the polysulfide formation?
Alen Vižintin, Laurent Chabanne, Elena Tchernychova, Iztok Arčon, Lorenzo Stievano, Giuliana Aquilanti, Markus Antonietti, Tim-Patric Fellinger, Robert Dominko, 2017, izvirni znanstveni članek

Opis: Electrochemical reactions in the LieS batteries are considered as a multistep reaction process with at least 2e3 equilibrium states. Here we report a possibility of having a conversion of Li2S into sulfur without detectible formation of polysulfides. That was confirmed by using a novel material system consisting of carbon coated Li2S particles prepared by carbothermal reduction of Li2SO4. Two independent in operando measurements showed direct oxidation of Li2S into sulfur for this system, with almost negligible formation of polysulfides at potentials above 2.5 V vs. Li/Liþ. Our results link the diversity of first charge profiles in the literature to the Li2S oxidation mechanism and show the importance of ionic wiring within the material. Furthermore, we demonstrate that the Li2S oxidation mechanism depends on the relative amount of soluble sulfur in the electrolyte. By controlling the type and the amount of electrolyte within the encapsulating carbon shell, it is thereby possible to control the reaction mechanism of Li2S activation.
Ključne besede: Lithium-sulfur batteries Li2S active material XAS UV/Vis spectroscopy Li2S activation
Objavljeno v RUNG: 03.03.2017; Ogledov: 5058; Prenosov: 0
Gradivo ima več datotek! Več...

10.
Study of Li-S batteries by S K-edge RIXS spectroscopy
Matjaž Kavčič, Matjaž Žitnik, Klemen Bučar, Marko Petrič, Iztok Arčon, Robert Dominko, Alen Vižintin, 2016, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: Li-S batteries are considered as one of the most promising candidates for future batteries in applications where high energy density is required [1]. Despite that the general principle of operation is known for a long time [2], the lack of detailed understanding of relevant operation mechanisms has so far prevented their extensive use. A Li-S battery is composed of a lithium metal anode and a sulfur based cathode, separated by a porous separator wetted with electrolyte. During the battery cycle the reduction and oxidation of S to Li2S and back proceeds through a complicated equilibrium mixture of compounds that are typically dissolved in the electrolyte in the form of long and short chain polysulfides. In order to improve our understanding of polysulfide formation and its interactions within electrode, which are essential to achieve the long term cycling stability, development and application of new analytical tools is required. In this work sulfur K-edge resonant X-ray emission (RXES) measurements were performed on the Li-S battery in operando mode. The experiment was performed at the ID26 beamline at ESRF using the Johansson type tender x-ray emission spectrometer [3]. Full K-L RIXS maps were recorded on a set of chemically prepared Li2Sx sample standards characterized by different Li:S stoichiometric ratio, followed by the operando measurements on Li-S battery. Using the spectra recorded on Li2Sx standards two excitation energies were chosen and RXES spectra from the back of the battery cathode were sequentially acquired during one discharge cycle (C20). The relative amounts of each sulfur compound in the cathode during the discharge cycle were determined from the linear combination fit using measured reference standard spectra. Because of resonant excitation conditions the sensitivity for the polysulfide detection was significantly enhanced. Our work sets up S K-edge RIXS spectroscopy as an important analytical tool to study the mechanism of Li-polysulfide formation in the cathode and their interaction with the host matrix and electrolyte.
Ključne besede: RIXS, RXES, Li-S battery, operando, Sulphur K-edge XANES, Lithium polysulphides, Li2S
Objavljeno v RUNG: 28.06.2016; Ogledov: 5579; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh