Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


11 - 12 / 12
Na začetekNa prejšnjo stran12Na naslednjo stranNa konec
A map-matching algorithm dealing with sparse cellular fingerprint observations
Andrea Viel, Federico Pittino, Angelo Montanari, Chris Marshall, Donatella Gubiani, Paolo Gallo, Andrea Dalla Torre, 2019, izvirni znanstveni članek

Opis: The widespread availability of mobile communication makes mobile devices a resource for the collection of data about mobile infrastructures and user mobility. In these contexts, the problem of reconstructing the most likely trajectory of a device on the road network on the basis of the sequence of observed locations (map-matching problem) turns out to be particularly relevant. Different contributions have demonstrated that the reconstruction of the trajectory of a device with good accuracy is technically feasible even when only a sparse set of GNSS positions is available. In this paper, we face the problem of coping with sparse sequences of cellular fingerprints. Compared to GNSS positions, cellular fingerprints provide coarser spatial information, but they work even when a device is missing GNSS positions or is operating in an energy saving mode. We devise a new map-matching algorithm, that exploits the well-known Hidden Markov Model and Random Forests to successfully deal with noisy and sparse cellular observations. The performance of the proposed solution has been tested over a medium-sized Italian city urban environment by varying both the sampling of the observations and the density of the fingerprint map as well as by including some GPS positions into the sequence of fingerprint observations.
Najdeno v: osebi
Ključne besede: Map-matching algorithm, trajectory, cellular fingerprint, Hidden Markov Model
Objavljeno: 11.06.2019; Ogledov: 2151; Prenosov: 72
.pdf Polno besedilo (3,93 MB)

Iskanje izvedeno v 0 sek.
Na vrh