1. Multi-messenger and transient astrophysics with the Cherenkov Telescope ArrayŽ. Bošnjak, Anthony M. Brown, Alessandro Carosi, M. Chernyakova, Pierre Cristofari, F. Longo, A. López Oramas, M. Santander, Serguei Vorobiov, Danilo Zavrtanik, 2021, drugi sestavni deli Opis: The discovery of gravitational waves, high-energy neutrinos or the very-high-energy counterpart of gamma-ray bursts has revolutionized the high-energy and transient astrophysics community. The development of new instruments and analysis techniques will allow the discovery and/or follow-up of new transient sources. We describe the prospects for the Cherenkov Telescope Array (CTA), the next-generation ground-based gamma-ray observatory, for multi-messenger and transient astrophysics in the decade ahead. CTA will explore the most extreme environments via very-high-energy observations of compact objects, stellar collapse events, mergers and cosmic-ray accelerators. Ključne besede: multi-messenger astrophysics, gravitational waves, very-high-energy (VHE) gamma rays, cosmic rays, VHE neutrinos, transient astrophysical phenomena, Cherenkov Telescope Array Observatory Objavljeno v RUNG: 13.01.2025; Ogledov: 661; Prenosov: 7
Celotno besedilo (6,21 MB) Gradivo ima več datotek! Več... |
2. Probing extreme environments with the Cherenkov Telescope ArrayC. Boisson, Anthony M. Brown, A. Burtovoi, M. Cerruti, M. Chernyakova, T. Hassan, J.-P. Lenain, Marina Manganaro, Serguei Vorobiov, Danilo Zavrtanik, 2021, drugi sestavni deli Opis: The physics of the non-thermal Universe provides information on the acceleration mechanisms in extreme environments, such as black holes and relativistic jets, neutron stars, supernovae or clusters of galaxies. In the presence of magnetic fields, particles can be accelerated towards relativistic energies. As a consequence, radiation along the entire electromagnetic spectrum can be observed, and extreme environments are also the most likely sources of multi-messenger emission. The most energetic part of the electromagnetic spectrum corresponds to the very-high-energy (VHE, E>100 GeV) gamma-ray regime, which can be extensively studied with ground based Imaging Atmospheric Cherenkov Telescopes (IACTs). The results obtained by the current generation of IACTs, such as H.E.S.S., MAGIC, and VERITAS, demonstrate the crucial importance of the VHE band in understanding the non-thermal emission of extreme environments in our Universe. In some objects, the energy output in gamma rays can even outshine the rest of the broadband spectrum. The Cherenkov Telescope Array (CTA) is the next generation of IACTs, which, with cutting edge technology and a strategic configuration of ~100 telescopes distributed in two observing sites, in the northern and southern hemispheres, will reach better sensitivity, angular and energy resolution, and broader energy coverage than currently operational IACTs. With CTA we can probe the most extreme environments and considerably boost our knowledge of the non-thermal Universe. Ključne besede: black holes, relativistic jets, neutron stars, supernovae, clusters of galaxies, particle acceleration mechanisms, very-high-energy gamma rays, Cherenkov Telescope Array Observatory Objavljeno v RUNG: 10.01.2025; Ogledov: 669; Prenosov: 4
Celotno besedilo (7,40 MB) Gradivo ima več datotek! Več... |
3. Active Galactic Nuclei population studies with the Cherenkov Telescope ArrayAnthony M. Brown, Saptashwa Bhattacharyya, Barbara MARČUN, Judit Pérez Romero, Samo Stanič, Veronika Vodeb, Serguei Vorobiov, Gabrijela Zaharijas, Marko Zavrtanik, Danilo Zavrtanik, Miha Živec, 2021, objavljeni znanstveni prispevek na konferenci Opis: The Cherenkov Telescope Array (CTA) observatory is the next generation of ground-based imaging atmospheric Cherenkov telescopes (IACTs). Building on the strengths of current IACTs, CTA is designed to achieve an order of magnitude improvement in sensitivity, with unprecedented angular and energy resolution. CTA will also increase the energy reach of IACTs, observing photons in the energy range from 20 GeV to beyond 100 TeV. These advances in performance will see CTA heralding in a new era for high-energy astrophysics, with the emphasis shifting from source discovery, to population studies and precision measurements. In this talk we discuss CTA’s ability to conduct source population studies of �-ray bright active galactic nuclei and how this ability will enhance our understanding on the redshift evolution of this dominant �-ray source class. Ključne besede: Cherenkov Telescope Array, high-energy astrophysics, active galactic nuclei Objavljeno v RUNG: 19.09.2023; Ogledov: 2143; Prenosov: 7
Celotno besedilo (1,05 MB) Gradivo ima več datotek! Več... |
4. Flasher and muon-based calibration of the GCT telescopes proposed for the Cherenkov Telescope ArrayAnthony M. Brown, Andrej Filipčič, Gašper Kukec Mezek, Samo Stanič, Serguei Vorobiov, Lili Yang, Gabrijela Zaharijas, Danilo Zavrtanik, Marko Zavrtanik, 2015, objavljeni znanstveni prispevek na konferenci Ključne besede: Cherenkov Telescope Array (CTA), dual mirror small-size telescope (SST-2M, GCT) design for CTA, optical throughput calibration, flasher-based calibration, muon ring images Objavljeno v RUNG: 26.01.2017; Ogledov: 4962; Prenosov: 249
Celotno besedilo (655,53 KB) |