Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 3 / 3
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
Structural and chemical analysis of hard carbon negative electrode for Na-ion battery with X-ray Raman scattering and solid-state NMR spectroscopy
Ava Rajh, Matej Gabrijelčič, Blaž Tratnik, Klemen Bučar, Iztok Arčon, Marko Petric, Robert Dominko, Alen Vižintin, Matjaž Kavčič, izvirni znanstveni članek

Opis: This study explores the structural changes of hard carbon (HC) negative electrodes in sodium-ion batteries induced by insertion of Na ions during sodiation. X-ray Raman spectroscopy (XRS) was used to record both C and Na K-edge absorption spectra from bulk HC anodes carbonized at different temperatures and at several points during sodiation and desodiation. Comparing the [pi]*/[sigma]* regions in the C K-edge spectra sp2/sp3 hybridization ratio of material was determined. Higher carbonization temperatures led to increased order in graphitic structure and shorter bond lengths. Sodiation caused a decrease in graphitic layer order due to inserted Na ions. Complementary operando solid state 23Na nuclear magnetic resonance (ssNMR) studies confirmed the structural changes, while showing pore filling mechanism, which is not observed in ex situ measurements, primarily at higher carbonization temperatures. XRS analysis of Na K-edge spectra revealed systematic variations in the solid electrolyte interface (SEI) composition during cycling. Changes in XRS spectra were attributed to both SEI composition alterations, accompanied by the insertion/adsorption of Na ions at defect sites within the carbon structure.
Ključne besede: hard carbon, RIXS, carbon XANES, EXAFS, NMR, Na battery
Objavljeno v RUNG: 10.09.2024; Ogledov: 1070; Prenosov: 1
.pdf Celotno besedilo (7,76 MB)
Gradivo ima več datotek! Več...

2.
Structural and chemical analysis of Na-ion batteries with X-ray Raman scattering spectroscopy
Ava Rajh, Matej Gabrijelčič, Alen Vižintin, Klemen Bučar, Iztok Arčon, Marko Petric, Robert Dominko, 2024, objavljeni povzetek znanstvenega prispevka na konferenci

Ključne besede: X-Ray Raman, Na-ion batteries
Objavljeno v RUNG: 05.07.2024; Ogledov: 1152; Prenosov: 3
URL Povezava na datoteko
Gradivo ima več datotek! Več...

3.
Characterization of electrochemical processes in metal-organic batteries by X-ray Raman spectroscopy
Ava Rajh, Iztok Arčon, Klemen Bučar, Matjaž Žitnik, Marko Petric, Alen Vižintin, Jan Bitenc, Urban Košir, Robert Dominko, Hlynur Gretarsson, Martin Sundermann, Matjaž Kavčič, 2022, izvirni znanstveni članek

Opis: X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard Xrays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal−organic batteries during the charge/ discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal−organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal−organic batteries.
Ključne besede: X-ray Raman spectroscopy, meta-organic batteries, oxygen K-edge XANES, electrochemical processes
Objavljeno v RUNG: 24.03.2022; Ogledov: 2582; Prenosov: 21
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh