Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 10 / 21
Na začetekNa prejšnjo stran123Na naslednjo stranNa konec
1.
Uncovering the nature of transient and metastable nonequilibrium phases in 1T − ▫$TaS_2$ ▫
Tanusree Saha, Arindam Pramanik, Barbara Ressel, Alessandra Ciavardini, Fabio Frassetto, Federico Galdenzi, Luca Poletto, Arun Ravindran, Primož Rebernik Ribič, Giovanni De Ninno, 2023, izvirni znanstveni članek

Opis: Complex systems are characterized by strong coupling between different microscopic degrees of freedom. Photoexcitation of such materials can drive them into new transient and metastable hidden phases that may not have any counterparts in equilibrium. By exploiting femtosecond time- and angle-resolved photoemission spectroscopy, we probe the photoinduced transient phase and the recovery dynamics of the ground state in a complex material: the charge density wave (CDW)–Mott insulator 1T-TaS2. We reveal striking similarities between the band structures of the transient phase and the (equilibrium) structurally undistorted metallic phase, with evidence for the coexistence of the low-temperature Mott insulating phase and high-temperature metallic phase. Following the transient phase, we find that the restorations of the Mott and CDW orders begin around the same time. This highlights that the Mott transition is tied to the CDW structural distortion, although earlier studies have shown that the collapses of Mott and CDW phases are decoupled from each other. Interestingly, as the suppressed order starts to recover, a metastable phase emerges before the material recovers to the ground state. Our results demonstrate that it is the CDW lattice order that drives the material into this metastable phase, which is indeed a commensurate CDW–Mott insulating phase but with a smaller CDW amplitude. Moreover, we find that the metastable phase emerges only under strong photoexcitation (∼3.6 mJ/cm2) and has no evidence when the photoexcitation strength is weak (∼1.2 mJ/cm2).
Ključne besede: angle resolved photoemission, time resolved photoemission, 2D materials, charge density wave, Mott insulator
Objavljeno v RUNG: 15.01.2024; Ogledov: 302; Prenosov: 4
.pdf Celotno besedilo (2,30 MB)
Gradivo ima več datotek! Več...

2.
Modulation of charge transfer exciton dynamics in organic semiconductors using different structural arrangements
Cristian Soncini, Abhishek Kumar, Federica Bondino, Elena Magnano, Matija Stupar, Barbara Ressel, Giovanni De Ninno, Antonis Papadopoulos, Efthymis Serpetzoglou, Emmanuel Stratakis, Maddalena Pedio, 2023, izvirni znanstveni članek

Opis: In devices based on organic semiconductors, aggregation and inter-molecular interactions play a key role in affecting the photo-physical and dynamical carrier properties of the material, potentially becoming a limiting factor to achieving high efficiency. As a consequence, a detailed understanding of the interplay between the film molecular structure and the material properties is essential to properly design devices with optimized performance. Here we demonstrate how different molecular structural arrangements modulate the charge transfer (CT) dynamics in cobalt phthalocyanine (CoPc) thin films. By transient absorption spectroscopy and time-resolved photoemission spectroscopy, we study the influence of different CoPc structures on the dynamical electronic properties, the CoPc intra and inter- molecular de-excitation pathways up to 7 ns. We rationalize the ultrafast formation of triplet states in the CoPc through an electron exchange process between the single-occupied Co3dz2 orbital and p orbitals of the macrocycle, which obviate for an energetically unfavourable spin-flip. We found enhanced CT exciton lifetime in the case of the herringbone structure with respect to the brickwork one, possibly explainable by a more efficient CT exciton delocalization along the stacking axis.
Ključne besede: charge transfer, organic molecules, time resolved spectroscopies
Objavljeno v RUNG: 30.06.2023; Ogledov: 854; Prenosov: 4
URL Povezava na datoteko
Gradivo ima več datotek! Več...

3.
The challenge with high permittivity acceptors in organic solar cells : a case study with Y-series derivatives
Peter Fürk, Suman Mallick, Thomas Rath, Matiss Reinfelds, Mingjian Wu, Erdmann Spiecker, Nikola Simic, Georg Haberfehlner, Gerald Kothleitner, Barbara Ressel, 2023, izvirni znanstveni članek

Opis: Y-series acceptors have brought a paradigm shift in terms of power conversion efficiencies of organic solar cells in the last few years. Despite their high performance, these acceptors still exhibit substantial energy loss, stemming from their low-permittivity nature. To tackle the energy loss situation, we prepared modified Y-series acceptors with improved permittivities via an alternative synthetic route.
Ključne besede: solar cells, Y-series acceptors, morphology, efficiency measurements
Objavljeno v RUNG: 29.06.2023; Ogledov: 864; Prenosov: 6
.pdf Celotno besedilo (3,82 MB)
Gradivo ima več datotek! Več...

4.
5.
6.
Hot-carrier and optical-phonon ultrafast dynamics in the topological insulator Bi2Te3 upon iron deposition on its surface
M Weis, K Balin, T Sobol, A Ciavardini, G Vaudel, V Juvè, B Arnaud, Barbara Ressel, M Stupar, K.C. Prince, Giovanni De Ninno, P Ruello, J Szade, 2021, izvirni znanstveni članek

Opis: This paper presents a complete study of electronic structures and photoexcited carrier dynamics in topological insulators capped with iron and iron oxide. We combine static and time-resolved angle-resolved photoemission spectroscopies (ARPES, TR-ARPES) with time-resolved optical methods (transient optical reflectivity and transmission). Both single crystal and thin films of Bi2Te3 are studied. We show that monolayers of iron and iron oxide significantly affect the electronic band structure at the interface by shifting the Fermi level into the conduction band, which we explain by a band bending effect, and is confirmed by in situ XPS measurements
Ključne besede: time resolved spectroscopies, topological insulators, interfaces
Objavljeno v RUNG: 13.12.2021; Ogledov: 1769; Prenosov: 26
.pdf Celotno besedilo (2,90 MB)

7.
Orbital selective dynamics in Fe-pnictides triggered by polarized pump pulse excitations
Ganesh Adhikary, Tanusree Saha, Primož Rebernik Ribič, Matija Stupar, Barbara Ressel, Jurij Urbančič, Giovanni De Ninno, A. Thamizhavel, Kalobaran Maiti, 2021, izvirni znanstveni članek

Opis: Quantum materials display exotic behaviours related to the interplay between temperature-driven phase transitions. Here, we study the electron dynamics in one such material, CaFe$_2$As$_2$, a parent Fe-based superconductor, employing time and angle-resolved photoemission spectroscopy. CaFe$_2$As$_2$ exhibits concomitant transition to spin density wave state and tetragonal to orthorhombic structure below 170 K. The Fermi surface of this material consists of three hole pockets ($\alpha$, $\beta$ and $\gamma$) around $\Gamma$-point and two electron pockets around $X$-point. The hole pockets have $d_{xy}$, $d_{yz}$ and $d_{zx}$ orbital symmetries. The $\beta$ band constituted by $d_{xz}$/$d_{yz}$ orbitals exhibit a gap across the magnetic phase transition. We discover that polarized pump pulses can induce excitations of electrons of a selected symmetry. More specifically, while $s$-polarized light (polarization vector perpendicular to the $xz$-plane) excites electrons corresponding to all the three hole bands, $p$-polarized light excites electrons essentially from ($\alpha$,$\beta$) bands which are responsible for magnetic order. Interestingly, within the magnetically ordered phase, the excitation due to the $p$-polarized pump pulses occur at a time scale of 50 fs, which is significantly faster than the excitation induced by $s$-polarized light ($\sim$ 200 fs). These results suggest that the relaxation of different ordered phases occurs at different time scales and this method can be used to achieve selective excitations to disentangle complexity in the study of quantum materials.
Ključne besede: Electronic structure, Pnictides and chalcogenides, Time-resolved spectroscopy
Objavljeno v RUNG: 13.10.2021; Ogledov: 1723; Prenosov: 6
.pdf Celotno besedilo (9,56 MB)

8.
Dissecting Mott and charge-density wave dynamics in the photoinduced phase of 1T-TaS[sub]2
Alberto Simoncig, Matija Stupar, Barbara Ressel, Tanusree Saha, Primož Rebernik Ribič, Giovanni De Ninno, 2021, izvirni znanstveni članek

Opis: The two-dimensional transition-metal dichalcogenide 1T−TaS2 is a complex material standing out for its puzzling low temperature phase marked by signatures amenable to both Mott-insulating and charge-density wave states. Electronic Mott states, coupled to a lattice, respond to coherent optical excitations via a modulation of the lower (valence) Hubbard band. Such dynamics is driven by strong electron-phonon coupling and typically lasts for tens of picoseconds, mimicking coherent structural distortions. Instead, the response occurring at the much faster timescale, mainly dominated by electronic many-body effects, is still a matter of intense research. By performing time- and angle-resolved photoemission spectroscopy, we investigated the photoinduced phase of 1T−TaS2 and found out that its lower Hubbard band promptly reacts to coherent optical excitations by shifting its binding energy towards a slightly larger value. This process lasts for a time comparable to the optical pump pulse length, mirroring a transient change of the onsite Coulomb repulsion energy (U). Such an observation suggests that the correction to the bare value of U, ascribed to the phonon-mediated screening which slightly opposes the Hubbard repulsion, is lost within an interval of a few tens of femtoseconds and can be understood as a fingerprint of electronic states largely decoupled from the lattice. Additionally, these results enforce the hypothesis, envisaged in the current literature, that the transient photoinduced states belong to a sort of crossover phase instead of an equilibrium metallic one.
Ključne besede: ultrafast phenomena, time resolved photoemission, strongly correlated systems, transition metal dichalcogenide
Objavljeno v RUNG: 13.04.2021; Ogledov: 2253; Prenosov: 0
Gradivo ima več datotek! Več...

9.
Photoelectric effect with a twist
Giovanni De Ninno, Jonas Wätzel, Primož Rebernik Ribič, Enrico Allaria, Marcello Coreno, Miltcho B. Danailov, Christian David, Alexander Demidovich, Michele Di Fraia, Luca Giannessi, Klaus Hansen, Špela Krušič, Michele Manfredda, Micheal Meyer, Andrej Mihelič, Najmeh Mirian, Oksana Plekan, Barbara Ressel, Benedikt Rösner, Alberto Simoncig, Simone Spampinati, Janez Štupar, Matjaž Žitnik, Marco Zangrando, Carlo Callegari, Jamal Berakdar, 2020, izvirni znanstveni članek

Opis: Photons have fixed spin and unbounded orbital angular momentum (OAM). While the former is manifested in the polarization of light, the latter corresponds to the spatial phase distribution of its wavefront1. The distinctive way in which the photon spin dictates the electron motion upon light– matter interaction is the basis for numerous well-established spectroscopies. By contrast, imprinting OAM on a mat- ter wave, specifically on a propagating electron, is gener- ally considered very challenging and the anticipated effect undetectable2. In refs. 3,4, the authors provided evidence of OAM-dependent absorption of light by a bound electron. Here, we seek to observe an OAM-dependent dichroic photo- electric effect, using a sample of He atoms. Surprisingly, we find that the OAM of an optical field can be imprinted coher- ently onto a propagating electron wave. Our results reveal new aspects of light–matter interaction and point to a new kind of single-photon electron spectroscopy.
Ključne besede: FEL, OAM, Photoelectric effect
Objavljeno v RUNG: 09.09.2020; Ogledov: 2746; Prenosov: 0
Gradivo ima več datotek! Več...

10.
Coupling of autoionizing states by a chirped laser pulse
Matjaž Žitnik, Andrej Mihelič, Klemen Bučar, Mateja Hrast, Žiga Barba, Špela Krušič, Primož Rebernik Ribič, Jurij Urbančič, Barbara Ressel, Matija Stupar, David Gauthier, Giovanni De Ninno, 2020, objavljeni povzetek znanstvenega prispevka na konferenci

Opis: We have observed the autoionization of the laser-coupled 2s2p 1Po and 2p2 1Se resonances in helium. The ions were collected while varying the frequency and delay of the extreme-ultraviolet (EUV) excitation pulse with respect to the linearly chirped visible (VIS) laser pulse. From the measured frequency-delay map the Autler- Townes splitting, the EUV-VIS cross-correlation and the linear chirp parameter were extracted.
Ključne besede: High Harmonic Generation
Objavljeno v RUNG: 29.06.2020; Ogledov: 2979; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.06 sek.
Na vrh