Repozitorij Univerze v Novi Gorici

Iskanje po repozitoriju
A+ | A- | Pomoč | SLO | ENG

Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju


1 - 2 / 2
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
Summertime particulate matter and its composition in Greece
M. A. Tsiflikiotou, E. Kostenidou, D. K. Papanastasiou, D. Patoulias, Pavlos Zarmpas, D. Paraskevopoulou, E. Diapouli, Christos Kaltsonoudis, Kalliopi Florou, Iasonas Stavroulas, 2019, izvirni znanstveni članek

Opis: During the summer of 2012 a coordinated field campaign was conducted in multiple locations in Greece in order to characterize the ambient particulate matter (PM) levels, its chemical composition and the contribution of the regional and local sources. PM1, PM2.5 and PM10 samples were collected simultaneously at seven different sites in Greece: an urban and a suburban station in Patras, a suburban station in Thessaloniki, a suburban and an urban background station in Athens, a rural background station at the Navarino Environmental Observatory (NEO) in southwestern Peloponnese and a remote background site at Finokalia in the northeastern part of Crete. The sites were selected to facilitate the estimation of the contribution of the local emission sources and long range transport. Sulfate and organics were the major PM1 components in all sites suggesting that high sulfate levels still remain in parts of Europe. The photochemistry of the Eastern Mediterranean can convert rapidly the emitted sulphur dioxide to sulfate. Our analysis indicated significant sulfate production over the area, with high sulfate levels, especially in the remote site of Finokalia, associated with air masses that had passed over Turkey. There was high regional secondary organic aerosol production dominating organic aerosol levels even in a major city like Athens. High organic aerosol levels were associated with air masses that had crossed the Balkans with a significant biogenic component. The average PM2.5 concentration ranged from 13 to 18 μg m−3 in the different sites. There were unexpected significant gradients in the concentrations of secondary aerosol components in length scales of a few hundred kilometers. The low concentrations of measured PM2.5 nitrate are mostly organic nitrates and supermicrometer nitrate associated with sea-salt and dust. Dust was a significant PM10 constituent in all areas and was quite variable in space showing the importance of the local sources.
Ključne besede: PM2.5, sulfate aerosol, secondary inorganic aerosol, secondary organic aerosol, Greece
Objavljeno v RUNG: 13.05.2024; Ogledov: 305; Prenosov: 0
Gradivo ima več datotek! Več...

Particle number size distribution statistics at City-Centre Urban Background, urban background, and remote stations in Greece during summer
S. Vratolis, Maria I. Gini, Spiros Bezantakos, Iasonas Stavroulas, Nikos Kalivitis, E. Kostenidou, E. Louvaris, D. Siakavaras, George Biskos, Nikolaos Mihalopoulos, 2019, izvirni znanstveni članek

Opis: Particle number size distribution measurements were conducted during the summer of 2012 at City-Centre Urban Background (Patras-C), Urban Background (ICE-HT in Patras, DEM in Athens, EPT in Thessaloniki), and Regional Background stations (FIN in Crete). At the City-Centre Urban Background station, the average number distribution had a geometric mean diameter peak approximately at 60 nm and the highest number concentration, whereas at the Regional Background station and the Urban Background stations it displayed a major peak approximately at 100 nm, with the Regional Background station exhibiting the lowest number concentration. The particle number size distribution at each site was divided into size fractions and, based on their diurnal variation and previous studies, we concluded that the main sources for the City-Centre Urban Background station are traffic and the regional background concentration, for the Urban Background stations fresh traffic, aged traffic, cooking and the regional background concentration, and for the Regional Background station local activities (tourism, cooking) and regional background concentration. The median number concentration that is attributed to regional background concentration for the City-Centre Urban Background, the Urban Background and the Regional Background stations are respectively 13, 29 and 45% of the total number concentration. Nucleation events were identified at DEM station, where the newly formed particles accounted for 4% of the total particle concentration for the measurement period in the size range 10–20 nm, EPT, where they accounted for 12%, and FIN, where they accounted for 1%, respectively. New Particle Formation events contribution during summer to Condensation Cloud Nuclei were therefore insignificant in the Eastern Mediterranean. Modal analysis was performed on the number distributions and the results were classified in clusters. At the City-Centre Urban Background station, the cluster-source that dominated number concentration and frequency is related to fresh and aged traffic emissions, at the Urban Background stations aged traffic emissions, while at the Regional Background station number and frequency were dominated by the regional background concentration. Based on cluster analysis, 18% of the median number distribution was due to long range transport at the City-Centre Urban Background site, 37% at the Urban Background sites, and 59% at the Regional Background site. The Flexible Particle Dispersion Model (FLEXPART) was used in order to acquire geographic origin clusters and we concluded that the Etesian flow increases the median regional background number concentration in the Mediterranean basin by a factor of 2.5–4.
Ključne besede: Mediterranean aerosol, particle number size distribution clustering, FLEXPART clustering
Objavljeno v RUNG: 13.05.2024; Ogledov: 272; Prenosov: 0
Gradivo ima več datotek! Več...

Iskanje izvedeno v 0.01 sek.
Na vrh